Please wait a minute...
浙江大学学报(理学版)  2021, Vol. 48 Issue (5): 550-556    DOI: 10.3785/j.issn.1008-9497.2021.05.005
数学与计算机科学     
一类非线性混沌动力系统分析
王磊1, 张勇1, 舒永录2
1.河南工业职业技术学院 基础教学部,河南 南阳 473000
2.重庆大学 数学与统计学院,重庆 401331
Analysis on a nonlinear chaos dynamical system
WANG Lei1, ZHANG Yong1, SHU Yonglu2
1.Basic Teaching Department of Henan Polytechnic Institute,Nanyang 473000, Henan Province, China
2.College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China
 全文: PDF(1287 KB)   HTML  
摘要: 根据混沌动力系统的稳定性理论,通过引入广义李雅普诺夫函数,研究了一类广义大气混沌动力系统的全局指数吸引集与最终界,并给出了相应的Matlab仿真。研究结果可为研究大气混沌动力系统的运动提供理论依据,也可用于研究该混沌动力系统的混沌控制和同步。
关键词: 混沌吸引子混沌控制大气混沌动力系统全局吸引集    
Abstract: Based on the stability theory of chaotic dynamical system, the global attractive sets and the ultimate bound set of a class of a generalized atmospheric chaotic system are studied by introducing the generalized Lyapunov function. The corresponding Matlab simulation is demonstrated. Our results provide a theoretical basis for studying the motion of the atmospheric chaotic system and can also be used to study chaos control and chaos synchronization of this chaotic system.
Key words: chaotic attractors    globally attractive set    atmospheric chaotic dynamical system    chaos control
收稿日期: 2020-05-17 出版日期: 2021-09-15
CLC:  O 241.84  
基金资助: 国家自然科学基金资助项目(11171360).
通讯作者: ORCID:https://orcid. org /0000-0001-6973-4529,E-mail:zhangyongzhang2013@163.com.     E-mail: zhangyongzhang2013@163.com
作者简介: 王磊(1982—),ORCID:https://orcid. org /0000-0002-2197-7844,男,硕士,副教授,主要从事应用数学研究, E-mail:wangleibaas@163.co;
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王磊
张勇
舒永录

引用本文:

王磊, 张勇, 舒永录. 一类非线性混沌动力系统分析[J]. 浙江大学学报(理学版), 2021, 48(5): 550-556.

WANG Lei, ZHANG Yong, SHU Yonglu. Analysis on a nonlinear chaos dynamical system. Journal of Zhejiang University (Science Edition), 2021, 48(5): 550-556.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2021.05.005        https://www.zjujournals.com/sci/CN/Y2021/V48/I5/550

1 LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2): 130-141. DOI:10.1175/1520-0469(1963)020〈0130:dnf〉2.0.co;2
2 DOEDEL E J, KRAUSKOPF B, OSINGA H M. Global organization of phase space in the transition to chaos in the Lorenz system[J]. Nonlinearity, 2015, 28(11): 113-139. DOI:10.1088/0951-7715/28/11/r113
3 SPARROW C. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors[M]. New York:Springer Science & Business Media, 2012: 20-30.
4 STEWART I. The Lorenz attractor exists[J]. Nature, 2000, 406: 948-949. DOI:10.1038/35023206
5 LEONID A B. Short-and long-term forecast for chaotic and random systems (50 years after Lorenz's paper)[J]. Nonlinearity, 2014, 27: 51-60. DOI:10.1088/0951-7715/27/9/r51
6 POGROMSKY A Y, SANTOBONI G, NIJMEIJER H. An ultimate bound on the trajectories of the Lorenz systems and its applications[J]. Nonlinearity, 2003, 16:1597-1605. DOI:10.1088/0951-7715/16/5/303
7 LIBRE J, ZHANG X. Invariant algebraic surfaces of the Lorenz system[J]. Journal of Mathematical Physics, 2002, 43: 1622-1645. DOI:10.1063/1. 1435078
8 ZHANG F C, LIAO X F, ZHAGN G Y. Some new results for the generalized Lorenz system[J]. Qualitative Theory of Dynamical Systems, 2017, 16(3): 749-759. DOI:10.1007/s12346-016-0206-z
9 ZHANG F C, ZHAGN G Y. Further results on ultimate bound on the trajectories of the Lorenz system[J]. Qualitative Theory of Dynamical Systems, 2016, 15(1): 221-235. DOI:10.1007/s12346-015-0137-0
10 ZHANG F C, MU C L, ZHOU S M, et al. New results of the ultimate bound on the trajectories of the family of the Lorenz systems[J]. Discrete and Continuous Dynamical Systems(Series B), 2015, 20(4): 1261-1276. DOI:10.1016/j.cnsns.2010.05.032
11 YANG T, YANG Q G. A 3D autonomous system with infinitely many chaotic attractors[J]. International Journal of Bifurcation and Chaos, 2019, 29(12): 1950166. DOI:10.1142/s021812 7419501669
12 CHEN G R, UETA T. Yet another chaotic attractor[J]. International Journal of Bifurcation and Chaos, 1999, 9(7): 1465-1466.
13 LU J H, CHEN G R. A new chaotic attractor coined[J]. International Journal of Bifurcation and Chaos, 2002, 12(3): 659-661. DOI:10.1142/s0218 127402004620
14 LU J, CHEN G, CHENG D, et al. Bridge the gap between the Lorenz system and the Chen system[J]. International Journal of Bifurcation and Chaos, 2002, 12(12): 2917-2926. DOI:10.1142/s021812740200631x
15 ZHANG F C, LIAO X F, MU C L, et al. On global boundedness of the Chen system[J]. Discrete and Continuous Dynamical Systems(Series B), 2017, 22(4): 1673-1681. DOI:10.3934/dcdsb.2017080
16 ZHANG F C, LIAO X F, ZHAGN G Y. On the global boundedness of the Lü system[J]. Applied Mathematics and Computation, 2016, 284: 332-339. DOI:10.1016/j.amc.2016.03.017
17 ZHANG F C, CHEN R, WANG X Y, et al. Dynamics of a new 5D hyperchaotic system of Lorenz type[J]. International Journal of Bifurcation and Chaos, 2018, 28(3): 1850036. doi:10.1142/s0218127418500360
18 ZHANG F C, LIAO X F, ZHAGN G Y, et al. Dynamical analysis of the generalized Lorenz systems[J]. Journal of Dynamical and Control Systems, 2017, 23(2): 349-362. DOI:10.1007/s10883-016-9325-8
19 ZHANG F C, LIAO X F, ZHAGN G Y, et al. Dynamical behaviors of a generalized Lorenz family[J]. Discrete and Continuous Dynamical Systems(Series B), 2017, 22(10): 3707-3720. DOI:10. 3934/dcdsb.2017184
20 FOWLER A C, GIBBON J D, MCGUINNESS M J. The complex Lorenz equations[J]. Physica D, 1982(4): 139-163. DOI:10.1016/0167-2789(82)90057-4
21 WANG H J, LI X Y. Infinitely many heteroclinic orbits of a complex Lorenz system[J]. International Journal of Bifurcation and Chaos, 2017, 27: 1750110. DOI:10.1142/s0218127417501103
22 LIU Z L, WANG C N, JIN W Y, et al. Capacitor coupling induces synchronization between neural circuits[J]. Nonlinear Dynamics, 2019, 97: 2661-2673. DOI:10.1007/s11071-019-05155-7
23 ZHAO Y, MA J, YAO Y G, et al. Synchronization realization between two nonlinear circuits via an induction coil coupling[J]. Nonlinear Dynamics, 2019, 96: 205-217. DOI:10.1007/s11071-019-04784-2
24 ZHAO Y, ZHOU P, ALSAEDI A, et al. Energy flow-guided synchronization between chaotic circuits[J]. Applied Mathematics and Computation, 2020, 374: 124998. DOI:10.1016/j.amc.2019.124998
25 MA J, WU F Q, JIN W Y, et al. Calculation of Hamilton energy and control of dynamical systems with different types of attractors[J]. Chaos, 2017, 27(5): 053108. DOI:10.1063/1.4983469
26 WANG X Y, FENG L, LI R, et al. A fast image encryption algorithm based on non-adjacent dynamically coupled map lattice model[J]. Nonlinear Dynamics, 2019, 95: 2797-2824. DOI:10.1007/s11071-018-4723-y
27 WANG X Y, ZHAGN J J, ZHANG F C, et al. New chaotical image encryption algorithm based on Fisher-Yatess scrambling and DNA coding[J]. Chinese Physics B, 2019, 28(4): 040504. DOI:10.1088/1674-1056/28/4/040504
28 ZHANG F C, LI Y H, MU C L. Bounds of solutions of a kind of hyper-chaotic systems and application[J]. Journal of Mathematical Research with Applications, 2013, 33(3): 345-352.
29 LI D M, WU X Q, LU J A. Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz-Haken system[J]. Chaos, Solitons & Fractals, 2009,39: 1290-1296. DOI:10.1016/j.chaos.2007.06.038
30 LIAO X X, FU Y L, XIE S L, et al. Globally exponentially attractive sets of the family of Lorenz systems[J]. Science in China (Series F): Information Sciences, 2008, 51:283-292. DOI:10. 1007/s11432-008-0024-2
31 ZHANG F C. Analysis of a Lorenz-like chaotic system by Lyapunov functions[J]. Complexity, 2019, 2019: 7812769. DOI:10.1155/2019/7812769
[1] 张勇, 胡永才, 舒永录. 新三维非线性混沌系统的动力学特性分析[J]. 浙江大学学报(理学版), 2016, 43(4): 401-405.