Please wait a minute...
浙江大学学报(理学版)  2020, Vol. 47 Issue (5): 601-614    DOI: 10.3785/j.issn.1008-9497.2020.05.012
地球科学     
野外砾石统计方法的应用与对比
黄佳轮, 安凯旋, 陈汉林, 吴磊
浙江大学 地球科学学院, 浙江 杭州 310027
Application and comparison of field gravel statistical methods
HUANG Jialun, AN Kaixuan, CHEN Hanlin, WU Lei
School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2189 KB)   HTML  
摘要: 砾石对于研究构造活动和气候变化具有重要意义,而砾石粒径是其中的重要参数,如何准确地获取粒径数据则是砾石统计分析中的基础性工作。为了能更全面地了解和使用砾石统计方法,对地表砾石统计和地层砾石统计这2种方法从操作流程、抽样过程、样本容量、误差分析和适用条件等方面进行了分析和总结。地表砾石统计,主要有沃尔曼法和面积样本法,前者强调抽样的随机性,多适用于对粒径>2 mm砾石的统计,常用于研究砾质河床的砾石粒径顺流变化趋势;后者适用的粒径范围更广,可达细砂级沉积物,多用于探索河床砾-砂转换带和生物栖息环境划分等领域。地层砾石统计,大多使用体积样本法,强调砾石的成层性,可根据研究目的确定相应的网格筛,粒径范围也可达细砂级别,多用于沉积地层粒度对气候与构造的响应、河床监测和泥沙运移等方面。砾石统计方法的选择很大程度上取决于研究目的及野外工作条件,可根据实际情况灵活选择。
关键词: 砾石粒径适用条件砾石统计方法    
Abstract: Studies about natural gravels are significant for understanding of regional tectonics and climate change, and especially the gravel size is an important parameter in geology. To provide users with a more comprehensive understanding and application background of gravel statistical methods, we summarize two types of gravel statistical methods (surface gravel statistics methods and stratigraphic gravel statistics methods) with the operation of gravel statistical methods, sampling process, sample size, error analysis, and applicable conditions. The surface gravel statistics methods usually include the Wolman pebble count and area sampling. The Wolman pebble count emphasizes random sampling and is more suitable for gravel diameter larger than 2 mm to study the downstream fining of sediment in gravel-bed rivers. The area sampling is mostly used to explore natural phenomena of the gravel-sand transition in rivers and the characteristic of aquatic habitats due to its suitable gravel size range up to fine-grained sand. In contrast, the stratigraphic gravel statistics methods emphasize the stratification of gravel and apply the volumetric sampling. Previous researchers developed several kinds of mesh sieves based on corresponding research purposes. And the gravel size range can also reach to fine sand, which is most suitable for studying the response of gravel grain sizes to climate and tectonics, streambed monitoring and sediment transport analysis. This comprehensive study of the gravel statistical methods indicates that the choice of different methods largely depends on the research purpose and field working conditions which suggests us to make flexible selection based on specific situations.
Key words: gravel statistical method    applicable conditions    gravel diameter
收稿日期: 2019-10-14 出版日期: 2020-09-25
CLC:  P588.21+2  
基金资助: 国家自然科学基金资助项目(41720104003,41972217).
通讯作者: ORCID:http://orcid.org/0000-0002-6926-2880,E-mail: kxan@zju.edu.cn.     E-mail: kxan@zju.edu.cn
作者简介: 黄佳轮 (1994—),ORCID:http://orcid.org/0000-0002-9435-4533,男,硕士研究生,主要从事帕米尔构造结新生代演化过程的研究,E-mail: 21738055@zju.edu.cn.。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄佳轮
安凯旋
陈汉林
吴磊

引用本文:

黄佳轮, 安凯旋, 陈汉林, 吴磊. 野外砾石统计方法的应用与对比[J]. 浙江大学学报(理学版), 2020, 47(5): 601-614.

HUANG Jialun, AN Kaixuan, CHEN Hanlin, WU Lei. Application and comparison of field gravel statistical methods. Journal of Zhejiang University (Science Edition), 2020, 47(5): 601-614.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2020.05.012        https://www.zjujournals.com/sci/CN/Y2020/V47/I5/601

1 DULLER R A, WHITTAKER A C, FEDELE J J, et al. From grain size to tectonics[J]. Journal of Geophysical Research: Earth Surface, 2010, 115:F03022(1-19). DOI: 10.1029/2009JF001495
2 WHITTAKER A C, DULLER R A, SPRINGETT J, et al. Decoding downstream trends in stratigraphic grain size as a function of tectonic subsidence and sediment supply[J]. Geological Society of America Bulletin, 2011, 123(7/8): 1363-1382. DOI: 10.1130/b30351.1
3 ALLEN P A. From landscapes into geological history[J]. Nature, 2008, 451(7176): 274-276. DOI: 10.1038/nature06586
4 BROOKE S A S, WHITTAKER A C, ARMITAGE J J, et al. Quantifying sediment transport dynamics on alluvial fans from spatial and temporal changes in grain size, Death Valley, California[J]. Journal of Geophysical Research(Earth Surface), 2018, 123(8): 2039-2067. DOI: 10.1029/2018jf004622
5 D'ARCY M, WHITTAKER A C, RODABOLUDA D C, et al. Measuring alluvial fan sensitivity to past climate changes using a self-similarity approach to grain-size fining, Death Valley, California[J]. Sedimentology, 2017, 64(2): 388-424. DOI: 10.1111/sed.12308
6 DULLER R A, WHITTAKER A C, SWINEHART J B, et al. Abrupt landscape change post-6 Ma on the central Great Plains, USA[J]. Geology, 2012, 40(10): 871-874. DOI: 10.1130/g32919.1
7 HARRIES R M, KIRSTEIN L A, WHITTAKER A C, et al. Evidence for self-similar bedload transport on Andean Alluvial Fans, Iglesia Basin, south central Argentina[J]. Journal of Geophysical Research: Earth Surface, 2018, 123(9): 2292-2315. DOI: 10.1029/2017JF004501
8 PARSONS A J, MICHAEL N A, WHITTAKER A C, et al. Grain-size trends reveal the late orogenic tectonic and erosional history of the south-central Pyrenees, Spain[J]. Journal of the Geological Society, 2012, 169(2): 111-114. DOI: 10.1144/0016-76492011-087
9 WHITTAKER A C, ATTAL M L, ALLEN P A. Characterising the origin, nature and fate of sediment exported from catchments perturbed by active tectonics[J]. Basin Research, 2010, 22(6): 809-828. DOI: 10.1111/j.1365-2117.2009.00447.x
10 GRANT G E. The geomorphic response of gravel-bed rivers to dams: Perspectives and prospects[C]// CHURCH M, BIRON P M, ROY A G. Gravel‒Bed Rivers: Processes, Tools, Environments. Chichester: John Wiley & Sons, Ltd, 2012: 165-181. DOI: 10.1002/9781119952497.ch15
11 KONDOLF G M. PROFILE: hungry water: Effects of dams and gravel mining on river channels[J]. Environmental Management, 1997, 21(4): 533-551. DOI: 10.1007/s002679900048
12 HADDADCHI A, BOOKER D J, MEASURES R J. Predicting river bed substrate cover proportions across New Zealand[J]. Catena, 2018, 163: 130-146. DOI: 10.1016/j.catena.2017.12.014
13 KONDOLF G M, WOLMAN M G. The sizes of salmonid spawning gravels[J]. Water Resources Research, 1993, 29(7): 2275-2285. DOI: 10.1029/93WR00402
14 ATTAL M, LAVÉ J. Changes of bedload characteristics along the Marsyandi River (central Nepal): Implications for understanding hillslope sediment supply, sediment load evolution along fluvial networks, and denudation in active orogenic belts[J]. Tectonics, Climate, and Landscape Evolution: Geological Society of America Special Paper 398, Penrose Conference Series, 2006: 143-171.
15 ATTAL M, MUDD S M, HURST M D, et al. Impact of change in erosion rate and landscape steepness on hillslope and fluvial sediments grain size in the Feather River basin (Sierra Nevada, California)[J]. Earth Surface Dynamics, 2015, 3(1): 201-222. DOI: 10.5194/esurf-3-201-2015
16 GOMEZ B, ROSSER B J, PEACOCK D H, et al. Downstream fining in a rapidly aggrading gravel bed river[J]. Water Resources Research, 2001, 37(6): 1813-1823. DOI: 10.1029/2001wr900007
17 MILLER K L, SZABÓ T, JEROLMACK D J, et al. Quantifying the significance of abrasion and selective transport for downstream fluvial grain size evolution[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(11): 2412-2429. DOI: 10.1002/2014JF003156
18 MOUSSAVI-HARAMI R, MAHBOUBI A, KHANEHBAD M. Analysis of controls on downstream fining along three gravel‒bed rivers in the Band-e-Golestan drainage basin NE Iran[J]. Geomorphology, 2004, 61(1/2): 143-153. DOI: 10.1016/j.geomorph.2003.12.005
19 PAOLA C, PARKER G, SEAL R, et al. Downstream fining by selective deposition in a laboratory flume[J]. Science, 1992, 258(5089): 1757-1760. DOI: 10.1126/science.258.5089.1757
20 PAOLA C, SEAL R. Grain size patchiness as a cause of selective deposition and downstream fining[J]. Water Resources Research, 1995, 31(5): 1395-1407. DOI: 10.1029/94wr02975
21 SURIAN N. Downstream variation in grain size along an Alpine river:Analysis of controls and processes[J]. Geomorphology, 2002, 43(1/2): 137-149. DOI: 10.1016/s0169-555x(01)00127-1
22 WOHL E E, ANTHONY D J, MADSEN S W, et al. A comparison of surface sampling methods for coarse fluvial sediments[J]. Water Resources Research, 1996, 32(10): 3219-3226. DOI: 10.1029/96WR01527
23 WOLMAN M G. A method of sampling coarse river-bed material[J]. Transactions, American Geophysical Union, 1954, 35(6):951-956. DOI: 10.1029/TR035i006p00951
24 HEDGER R D, DODSON J J, BOURQUE J F, et al. Improving models of juvenile Atlantic salmon habitat use through high resolution remote sensing[J]. Ecological Modelling, 2006, 197(3/4): 505-511. DOI: 10.1016/j.ecolmodel.2006.03.028
25 BUSCOMBE D. Transferable wavelet method for grain-size distribution from images of sediment surfaces and thin sections, and other natural granular patterns[J]. Sedimentology, 2013, 60(7): 1709-1732. DOI: 10.1111/sed.12049
26 RUBIN D M. A Simple autocorrelation algorithm for determining grain size from digital images of sediment[J]. Journal of Sedimentary Research, 2004, 74(1): 160-165. DOI: 10.1306/052203740160
27 WARRICK J A, RUBIN D M, RUGGIERO P, et al. Cobble cam: grain-size measurements of sand to boulder from digital photographs and autocorrelation analyses[J]. Earth Surface Processes and Landforms, 2009, 34(13): 1811-1821. DOI: 10.1002/esp.1877
28 FU K, FANG X, GAO J, et al. Response of grain size of Quaternary gravels to climate and tectonics in the northern Tibetan Plateau[J]. Science in China (Ser D) : Earth Sciences, 2007, 50: 81-91. DOI: 10.1007/s11430-007-2021-5
29 舒霞, 吴玉程, 陶庆秀, 等. Mastersizer 2000分析报告解析[J]. 实验技术与管理, 2011, 28(2): 37-41. DOI: 10.3969/j.issn.1002-4956.2011.02.012 SHU X, WU Y C, TAO Q X, et al. An analysis on report of Mastersizer 2000 laser particle size analyzer[J]. Experimental Technology and Management, 2011, 28(2): 37-41. DOI: 10.3969/j.issn.1002-4956.2011.02.012
30 BLOTT S J, PYE K. Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms, 2001, 26(11): 1237-1248. DOI: 10.1002/esp.261
31 FRIPP J B, DIPLAS P. Surface sampling in gravel streams[J]. Journal of Hydraulic Engineering, 1993, 119(4): 473-490. DOI: 10.1061/(ASCE)0733-9429(1993)119:4(473)
32 LEOPOLD L B. An improved method for size distribution of stream bed gravel[J]. Water Resources Research, 1970, 6(5): 1357-1366. DOI: 10.1029/WR006i005p01357
33 MARCUS W A, LADD S C, STOUGHTON J A, et al. Pebble counts and the role of user-dependent bias in documenting sediment size distributions[J]. Water Resources Research, 1995, 31(10): 2625-2631. DOI: 10.1029/95wr02171
34 COWIE P A, WHITTAKER A C, ATTAL M, et al. New constraints on sediment-flux-dependent river incision: Implications for extracting tectonic signals from river profiles[J]. Geology, 2008, 36(7): 535-538. DOI: 10.1130/g24681a.1
35 DINGLE E H, SINCLAIR H D, ATTAL M, et al. Subsidence control on river morphology and grain size in the Ganga Plain[J]. American Journal of Science, 2016, 316(8): 778-812. DOI: 10.2475/08.2016.03
36 GAREFALAKIS P, SCHLUNEGGER F. Link between concentrations of sediment flux and deep crustal processes beneath the European Alps[J]. Scientific Reports, 2018, 8(1): 183. DOI: 10.1038/s41598-017-17182-8
37 GRAN K B. Strong seasonality in sand loading and resulting feedbacks on sediment transport, bed texture, and channel planform at Mount Pinatubo, Philippines[J]. Earth Surface Processes and Landforms, 2012, 37(9): 1012-1022. DOI: 10.1002/esp.3241
38 ADAMS J. Gravel size analysis from photographs[J]. Journal of the Hydraulics Division, 1979, 105(10): 1247-1255.
39 BUNTE K, ABT S R. Sampling surface and subsurface particle-size distributions in wadable gravel-and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring[C]//General Technical Report RMRS-GTR-74. Fort Collins: United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2001. DOI: 10.2737/RMRS-GTR-74
40 KELLERHALS R, BRAY D I. Sampling procedures for coarse fluvial sediments[J]. Journal of the Hydraulics Division, 1971, 97(8): 1165-1180.
41 EATON B C, MOORE R D, MACKENZIE L G. Percentile-based grain size distribution analysis tools (GSDtools)-estimating confidence limits and hypothesis tests for comparing two samples[J]. Earth Surface Dynamics, 2019, 7(3): 789-806. DOI: 10.5194/esurf-7-789-2019
42 GRAHAM D J, ROLLET A J, PIÉGAY H, et al. Maximizing the accuracy of image-based surface sediment sampling techniques[J]. Water Resources Research, 2010, 46(2):W02508(1-15). DOI: 10.1029/2008WR006940
43 BUNTE K, ABT S R. Sampling frame for improving pebble count accuracy in coarse gravel-bed streams1[J]. JAWRA Journal of the American Water Resources Association, 2001, 37(4): 1001-1014. DOI: 10.1111/j.1752-1688.2001.tb05528.x
44 DUBILLE M, LAVÉ J. Rapid grain size coarsening at sandstone/conglomerate transition: similar expression in Himalayan modern rivers and Pliocene molasse deposits[J]. Basin Research, 2015, 27(1): 26-42. DOI: 10.1111/bre.12071
45 DIPLAS P, FRIPP J B. Properties of various sediment sampling procedures[J]. Journal of Hydraulic Engineering, 1992, 118(7): 955-970. DOI: 10.1061/(ASCE)0733-9429(1992)118:7(955)
46 林秀斌, 陈汉林, WYRWOLLK H, 等. 青藏高原东北部隆升:来自宁夏同心小洪沟剖面的证据[J]. 地质学报, 2009, 83(4): 455-467. DOI: 10.3321/j.issn:0001-5717.2009.04.001 LIN X B, CHEN H L, WYRWOLL K H, et al. Uplift of the northeastern Tibetan Plateau: Evidences from the Xiaohonggou section in Tongxin, Ningxia[J]. Acta Geological Sinica, 2009,83(4):454-467. DOI: 10.3321/j.issn:0001-5717.2009.04.001
47 廖林, 陈汉林, 程晓敢, 等. 帕米尔东北缘新生代隆升活动: 来自奥依塔格剖面砾石统计的证据[J]. 地球科学——中国地质大学学报, 2012, 37(4): 791-804. DOI: 10.3799/dqkx.2012.088 LIAO L, CHEN H L , CHENG X G, et al. Cenozoic uplift of the northeastern Pamir: Evidence from the gravel counting results of the Oytag section[J]. Earth Science-Journal of China University of Geosciences, 2012, 37 (4): 791-801. DOI: 10.3799/dqkx.2012.088
48 WILCOCK P R, STULL R S. Magnetic paint sampling of the surface and subsurface of clastic sediment beds[J]. Journal of Sedimentary Research, 1989, 59(4): 626-627. DOI: 10.1306/212F9025-2B24-11D7-8648000102C1865D.
49 DIPLAS P, SUTHERLAND A J. Sampling techniques for gravel sized sediments[J]. Journal of Hydraulic Engineering, 1988, 114(5): 484-501. DOI: 10.1061/(ASCE)0733-9429(1988)114:5(484)
50 BAPTISTA P, CUNHA T R, GAMA C, et al. A new and practical method to obtain grain size measurements in sandy shores based on digital image acquisition and processing[J]. Sedimentary Geology, 2012, 282: 294-306. DOI: 10.1016/j.sedgeo.2012.10.005
51 BUSCOMBE D. Estimation of grain-size distributions and associated parameters from digital images of sediment[J]. Sedimentary Geology, 2008, 210(1/2): 1-10. DOI: 10.1016/j.sedgeo.2008.06.007
52 BUSCOMBE D, MASSELINK G. Grain-size information from the statistical properties of digital images of sediment[J]. Sedimentology, 2009, 56(2): 421-438. DOI: 10.1111/j.1365-3091.2008.00977.x
53 BUSCOMBE D, RUBIN D M, WARRICK J A. A universal approximation of grain size from images of noncohesive sediment[J]. Journal of Geophysical Research: Earth Surface, 2010, 115(F2):F02015(1-17. DOI: 10.1029/2009JF001477
54 CASTRO P I, VICENS R S. Grain-Size measurements of fluvial gravel bars using object-based image analysis[J]. Revista Brasileira de Geomorfologia, 2018,19(1):DOI: 10.20502/rbg. v19i1.1206
55 CHANG F J, CHUNG C H. Estimation of riverbed grain-size distribution using image-processing techniques[J]. Journal of Hydrology, 2012, 440/441: 102-112. DOI: 10.1016/j.jhydrol.2012.03.032
56 CHENG Z, LIU H. Digital grain-size analysis based on autocorrelation algorithm[J]. Sedimentary Geology, 2015, 327: 21-31. DOI: 10.1016/j.sedgeo.2015.07.008
57 CISLAGHI A, CHIARADIA E A, BISCHETTI G B. A comparison between different methods for determining grain distribution in coarse channel beds[J]. International Journal of Sediment Research, 2016, 31: 97-109. DOI: 10.1016/j.ijsrc.2015.12.002
58 GRAHAM D J, REID I, RICE S P. Automated sizing of coarse-grained sediments: Image-processing procedures[J]. Mathematical Geology, 2005, 37(1): 1-28. DOI: 10.1007/s11004-005-8745-x
59 GRAHAM D J, RICE S P, REID I. A transferable method for the automated grain sizing of river gravels[J]. Water Resources Research, 2005, 41(7): W07020(1-12) . DOI: 10.1029/2004WR003868
60 PURINTON B, BOOKHAGEN B. Introducing pebble counts: A grain-sizing tool for photo surveys of dynamic gravel-bed rivers[J]. Earth Surface Dynamics, 2019,7(3):859-877. DOI: 10.5194/esurf-2019-20
61 MARION A, FRACCAROLLO L. New conversion model for areal sampling of fluvial sediments[J]. Journal of Hydraulic Engineering, 1997, 123(12): 1148-1151. DOI: 10.1061/(ASCE)0733-9429(1997)123:12(1148)
62 PEARSON E, SMITH M W, KLAAR M J, et al. Can high resolution 3D topographic surveys provide reliable grain size estimates in gravel bed rivers?[J]. Geomorphology, 2017, 293: 143-155. DOI: 10.1016/j.geomorph.2017.05.015
63 IBBEKEN H, SCHLEYER R. Photo-sieving: A method for grain-size analysis of coarse-grained, unconsolidated bedding surfaces[J]. Earth Surface Processes and Landforms, 1986, 11(1): 59-77. DOI: 10.1002/esp.3290110108
64 CARBONNEAU P E, LANE S N, BERGERON N E. Catchment-scale mapping of surface grain size in gravel bed rivers using airborne digital imagery[J]. Water Resources Research, 2004, 40(7): W07202(1-11). DOI: 10.1029/2003WR002759
65 VERDÚ J M, BATALLA R J, MARTíNEZ-CASASNOVAS J A. High-resolution grain-size characterisation of gravel bars using imagery analysis and geo-statistics[J]. Geomorphology, 2005, 72(1-4): 73-93. DOI: 10.1016/j.geomorph.2005.04.015
66 DUGDALE S J, CARBONNEAU P E, CAMPBELL D. Aerial photosieving of exposed gravel bars for the rapid calibration of airborne grain size maps[J]. Earth Surface Processes and Landforms, 2010, 35: 627-639. DOI: 10.1002/esp.1936
67 SIME L C, FERGUSON R I. Information on grain sizes in gravel-bed rivers by automated image analysis[J]. Journal of Sedimentary Research, 2003, 73(4): 630-636. DOI: 10.1306/112102730630
68 BUTLER J B, LANE S N, CHANDLER J H. Automated extraction of grain-size data from gravel surfaces using digital image processing[J]. Journal of Hydraulic Research, 2001, 39(5): 519-529. DOI: 10.1080/00221686.2001.9628276
69 CURRAN J C, WATERS K A. The importance of bed sediment sand content for the structure of a static armor layer in a gravel bed river[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(7): 1484-1497. DOI: 10.1002/2014JF003143
70 PARKER G, SUTHERLAND A J. Fluvial armor[J]. Journal of Hydraulic Research, 1990, 28(5): 529-544. DOI: 10.1080/00221689009499044
71 ZHANG P Z, MOLNAR P, DOWNS W R. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates[J]. Nature, 2001, 410(6831): 891-897.
72 CHEN X W, CHEN H L, SOBEL E R, et al. Convergence of the Pamir and the South Tian Shan in the late Cenozoic: Insights from provenance analysis in the Wuheshalu section at the convergence area[J]. Lithosphere, 2019, 11(4): 507-523. DOI: 10.1130/L1028.1
73 RENGERS F, WOHL E. Trends of grain sizes on gravel bars in the Rio Chagres, Panama[J]. Geomorphology, 2007, 83(3/4): 282-293. DOI: 10.1016/j.geomorph.2006.02.019
74 RICE S. The nature and controls on downstream fining within sedimentary links[J]. Journal of Sedimentary Research, 1999, 69(1): 32-39. DOI: 10.1306/D426895F-2B26-11D7-8648000102C1865D
75 CHURCH M, HASSAN M A, WOLCOTT J F. Stabilizing self-organized structures in gravel-bed stream channels: Field and experimental observations[J]. Water Resources Research, 1998, 34(11): 3169-3179. DOI: 10.1029/98wr00484
76 LAMB M P, VENDITTI J G. The grain size gap and abrupt gravel-sand transitions in rivers due to suspension fallout[J]. Geophysical Research Letters, 2016, 43(8): 3777-3785. DOI: 10.1002/2016gl068713
77 KNIGHTON A D. The gravel-sand transition in a disturbed catchment[J]. Geomorphology, 1999, 27(3/4): 325-341. DOI: 10.1016/s0169-555x(98)00078-6
No related articles found!