文章快速检索  
  高级检索

PET-CT与乳腺癌分子病理分型、治疗反应及预后的相关性研究进展
潘静颖, 何梦烨, 柯蔚, 胡梦琳, 王美芳, 沈朋     
浙江大学医学院附属第一医院肿瘤内科, 浙江 杭州 310003
摘要:近年来,PET-CT在乳腺癌诊疗中的作用受到越来越多的关注。PET-CT可以作为一种无创诊断乳腺癌分子病理分型的检查手段,并且可以用于预测患者的治疗效果和预后。在乳腺癌的分子病理分型方面,luminal A型乳腺癌氟脱氧葡萄糖(FDG)PET-CT检查最大标准摄取值(SUVmax)最低,其次是luminal B型,最高的是三阴性或人类表皮生长因子受体2(HER2)过表达型乳腺癌,但SUVmax诊断乳腺癌分子病理分型的敏感度和特异度均不高,临床应用价值有限。在预测治疗效果和患者的预后方面,FDG PET-CT检查中FDG摄取值下降越多,治疗效果越好,且标准摄取值越低的患者预后越好。新型示踪剂18F-氟雌二醇(18F-FES)和[89Zr]曲妥珠单抗的应用可为乳腺癌患者的诊疗提供更多的信息。18F-FES PET-CT可以有效评估乳腺癌病灶的雌激素受体(ER)状态及患者对内分泌治疗的反应;[89Zr]曲妥珠单抗PET-CT可以显示HER2阳性的病灶,但是其特异度和敏感度较低。本文对近年来PET-CT在乳腺癌分子病理分型的判断、患者对治疗的应答及预后的预测相关研究进展进行综述。
关键词乳腺肿瘤/放射性核素显像     乳腺肿瘤/病理学     正电子发射断层显像术     治疗结果     预后     综述    
Advances on correlation of PET-CT findings with breast cancer molecular subtypes, treatment response and prognosis
PAN Jingying, HE Mengye, KE Wei, HU Menglin, WANG Meifang, SHEN Peng     
Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
Corresponding author: SHEN Peng, E-mail: shenp@zju.edu.cn; http://orcid.org/0000-0002-1123-9848
Abstract: In recent years, PET-CT has an increasing importance in the diagnosis and treatment of breast cancer. PET-CT scan can be used as a noninvasive method for molecular subtyping of breast cancer, and prediction of therapeutic effect and prognosis of patients. Studies have revealed that luminal A subtype has a significantly lower maximum standard intake value (SUVmax) than the other subtypes; triple-negative and human epidermal growth factor receptor 2 (HER2) positive tumors have relatively high SUVmax than luminal B subtype, but the specificity and sensitivity of SUVmax in diagnosis of molecular subtypes are very low, so its clinical application is limited. In predicting the effectiveness of the treatment and the prognosis of the patients, the decreased uptake of fluorodeoxyglucose (FDG) is correlated with better therapeutic effect. In addition, patients with high FDG uptake have worse survival outcomes. New tracers, such as 18F-fluoroestradiol (18F-FES) and[89Zr]trastuzumab play an important role in molecular subtyping of breast cancer. 18F-FES PET-CT can effectively evaluate the estrogen receptor (ER) status of breast cancer and the response to endocrine therapy.[89Zr]trastuzumab PET-CT can evaluate the expression of HER2 and localization of HER2-overexpressing tumors, but their specificities and sensitivities are also low. In this article, we review the recent advances on the correlation of PET-CT findings with molecular subtypes, treatment response and prognosis of breast cancer.
Key words: Breast neoplasms/radionuclide imaging     Breast neoplasms/pathology     Positron-emission tomography     Treatment outcome     Prognosis     Review    

乳腺癌是女性最常见的恶性肿瘤,严重威胁女性的健康。研究发现,乳腺癌的预后不仅与乳腺癌的疾病分期和组织学类型有关,还与其分子病理分型有关,不同分型的乳腺癌,其治疗选择和预后也不同[1]。目前,乳腺癌的分子病理分型主要通过穿刺活检来判断。但是,一个穿刺点的生物学状态并不能代表全身的肿瘤特征,并且有些病灶的部位较深,或者为骨转移灶等,并不适宜行穿刺活检,所以可以无创判断乳腺癌分子病理分型状态的检查手段十分有必要。

PET-CT作为核医学检查手段,可将代谢图像与功能图像相融合,不仅可以用于乳腺癌的诊断以及判断其分期和分级,还可以用于腋下淋巴结和隐匿性远处转移灶的检测。近年来越来越多的研究发现,氟脱氧葡萄糖(fluorodeoxyglucose,FDG)PET-CT中的某些信息与乳腺癌的分子病理分型有关,或许可以无创诊断乳腺癌的分子病理分型[2-7]。此外,研究还发现FDG PET-CT在预测乳腺癌患者的治疗效果和预后中也有一定的作用[8]

新型PET-CT示踪剂的应用,如18F-氟雌二醇(18F-fluoroestradiol,18F-FES)、[89Zr]曲妥珠单抗([89Zr] trastuzumab)等,为乳腺癌的诊疗提供了更多有用的信息。18F-FES是一种雌激素类似物,可以通过与雌激素受体(ER)特异性结合来显示乳腺癌组织中ER的分布情况,其代谢摄取值的高低与乳腺癌内分泌治疗的疗效有一定的相关性。[89Zr]曲妥珠单抗为人类表皮生长因子受体2(human epidermal growth factor receptor-2,HER2)靶向示踪剂,可用于检测HER2阳性的乳腺癌病灶。

本文主要对PET-CT与乳腺癌分子病理分型、患者对治疗的应答及预后之间的关系研究进展进行综述,探讨PET-CT在乳腺癌个体化治疗中的作用。

1 PET-CT与乳腺癌分子病理分型及ER、HER2表达的关系 1.1 FDG PET-CT与乳腺癌分子病理分型的关系

FDG PET-CT可以反映葡萄糖代谢增高的病灶。肿瘤组织的糖代谢率高于正常组织,所以FDG PET-CT往往用于显示全身范围内潜在的恶性肿瘤病灶。近年来越来越多的研究发现,不同分子病理分型乳腺癌病灶的FDG摄取值不同。表 1是文献中不同分子病理分型乳腺癌FDG PET-CT检查的最大标准摄取值(SUVmax)比较情况。其中,HER2过表达型和三阴性乳腺癌的SUVmax明显大于luminal A型乳腺癌,而luminal B型乳腺癌的SUVmax则介于两者之间。

表 1 文献中不同分子病理分型乳腺癌FDG PET-CT检查的最大标准摄取值比较 Table 1 Maximum standard intake value of different molecular types of breast cancer in FDG PET-CT
[x±s或平均值(范围)]
研究者 n luminal A型 Luminal B型
(HER2阴性)
Luminal B型
(HER2阳性)
HER2过表达型 三阴性 P
Koo等[9]* 552 4.69±3.45 6.51±4.18 7.44±4.73 9.83±6.03 < 0.01
Cokmert等[10]* 176 5.6±4.0 7.4±8.2 11.4±5.4 11.0±9.1 < 0.01
Tural等[2]* 73 8.0(3.5~19.6) 10.1(2.1~18.2) 14.4(3.5~19.6)* < 0.01
García Vicente等[3] 168 6.01±4.51 7.09±4.79 8.60±5.67 9.38±7.31 11.67±5.92 < 0.01
Miyake等[4] 89 4.4±2.2 7.7±4.0 7.5±4.3 9.1±5.4 < 0.01
Kitajima等[5] 306 3.41±2.07 5.17±3.52 6.57±3.84 7.55±3.63 6.97±4.17 < 0.01
Lee等[6] 38 4.5±2.3 7.2±4.9 7.3±4.7 10.2±5.5 8.8±7.1 < 0.01
HER2:人类表皮生长因子受体2.*该研究中Luminal B型未分HER2阳性和阴性;“—”:无相关数据.

luminal A型是临床上最常见的乳腺癌分子亚型,其通常是早期乳腺癌,复发风险较低,对内分泌治疗敏感,对化疗反应较差,往往首选内分泌治疗,预后较好;而非luminal A型的乳腺癌往往需要化疗,所以区分luminal A型和非luminal A型乳腺癌对治疗方案的选择十分重要[11]。FDG PET-CT对区分luminal A型与非luminal A型乳腺癌有一定的意义。有关文献报道,FDG PET-CT所测得的SUVmax区分luminal A型和非luminal A型乳腺癌的效率见表 2。通常情况下,SUVmax低的乳腺癌为luminal A型。

表 2 FDG PET-CT检查最大标准摄取值对luminal A型与非luminal A型乳腺癌的诊断效率 Table 2 Diagnostic efficiency of maximum standard intake value in FDG PET-CT for luminal A and non-luminal A breast cancer
研究者 n 分界值 敏感度
(%)
特异度
(%)
曲线下面积
Miyake等[4] 89 5.4 79 68 0.751
Kitajima等[5] 306 3.6 70.1 66.1 0.734
Lee等[6] 38 5.0 79.4 57.9 0.704
Cokmert等[10] 176 8.4 80 57.1 0.731

SUVmax与HER2和Ki-67也存在一定的相关性。Cokmert等[10]的研究发现,HER2过表达型乳腺癌患者的SUVmax偏高,以SUVmax大于等于10.05为标准,SUVmax诊断HER2过表达型乳腺癌的敏感度和特异度分别为62.9%和67.4%;以SUVmax大于等于9.25为标准,SUVmax诊断三阴性乳腺癌的敏感度和特异度分别为61.0%和64.4%;SUVmax高的病灶往往预示着Ki-67不小于14%。

除了SUVmax,乳腺癌的分子病理分型不同,其总代谢体积(metabolic total volume,MTV)、病灶总葡萄糖摄取量(total lesion glycolysis,TLG)也可以不同。如有研究发现,luminal A型乳腺癌的MTV平均值最低,而HER2过表达型乳腺癌患者的MTV平均值最高[12]

除了普通PET-CT,FDG PET-CT双时相显像也逐渐受到重视。Basu等[13]对乳腺癌患者分别在注射示踪剂后63 min和101 min进行成像,分别获得两个SUVmax,记为SUVmax1和SUVmax2。结果显示,三阴性乳腺癌患者的SUVmax1、SUVmax2和SUVmax变化率比非三阴性乳腺癌患者高。García Vicente等[14]分别在乳腺癌患者注射FDG 1、3 h时行PET-CT,两次的SUVmax分别为SUV-1和SUV-2,定义保留指数(retention index,RI)=[(SUV-2-SUV-1)/SUV-1]×100,结果发现ER和PR阳性乳腺癌患者的SUV-1、SUV-2和RI较ER和PR阴性乳腺癌患者更高。此外,García Vicente等[14]还发现,HER2阳性和HER2阴性乳腺癌之间RI的差异较SUVmax的差异更为显著,提示RI可能是一个更适合用于判断乳腺癌分子病理分型的指标。

综上所述,FDG PET-CT可以对乳腺癌的分子病理分型进行判断,其敏感度和特异度均不高,在临床应用中的意义有限,但是对于无法进行穿刺活检的病灶,如颅内转移、位置较深的肝脏转移等有一定的参考价值。相比于普通PET-CT,FDG PET-CT双时相显像在乳腺癌分子病理分型的判断中或许更有意义,但仍需要更多的研究来验证。

1.2 18F-FES PET-CT与乳腺癌ER表达的关系

ER表达状态与乳腺癌患者治疗方案的选择和预后密切相关。ER阳性的乳腺癌患者需行内分泌治疗,且预后较ER阴性患者好[7]。因此,为了能够更好地进行个体化治疗,治疗前应确定患者ER的表达状态。18F-FES作为雌二醇的衍生物,可以特异性地结合ER。因此,FES PET-CT可以作为一种评估ER表达的无创检查手段。Gemignani等[15]研究发现,以SUV等于1.5作为分界值,其诊断ER阳性的敏感度为85%,特异度为75%。Peterson等[16]研究发现,如果以1.1作为分界值,SUV诊断ER阳性的敏感度为76%,特异度为100%。Yang等[17]研究发现,以平均标准摄取值(SUVmean)等于1.82作为分界值,其诊断ER阳性的敏感度为88.2%,特异度为87.5%;以SUVmean等于1.21作为分界值,其诊断ER阳性的敏感度为88.2%,特异度为87.5%。Evangelista等[18]分析了九项研究共238例患者,标准摄取值诊断ER阳性的敏感度为82%(95%CI:74%~88%),特异度为95%(95%CI:86%~99%)。综上所述,FES PET-CT可以有效评估乳腺癌病灶的ER状态,标准摄取值越高的病灶,其为ER阳性的可能性越大。

1.3 [89Zr]曲妥珠单抗PET-CT与乳腺癌HER2表达的关系

HER2作为乳腺癌重要的预后指标、对化疗治疗应答的预测因子,以及曲妥珠单抗靶向治疗的靶点,其准确检测的重要性已得到临床和病理科医生的广泛认可[19]。[89Zr]曲妥珠单抗将HER2靶向药物曲妥珠单抗与89Zr螯合而形成具有放射标记性的抗体,可以靶向示踪HER2阳性的乳腺癌病灶。Chang等[20]分别对HER2阳性和HER2阴性的转移性乳腺癌患者在24 h和96 h时行[89Zr]曲妥珠单抗PET-CT,结果显示,HER2阳性患者的SUVmean值高于HER2阴性患者(P<0.01)。在Laforest等[21]的研究中,对12例HER2阳性乳腺癌患者实施[89Zr]曲妥珠单抗PET-CT检查,其中10例患者出现可以评估的病灶,2例患者无高代谢灶。Gebhart等[22]对56例经荧光原位杂交检测证实为HER2阳性的患者实施[89Zr]曲妥珠单抗PET-CT检查,发现40例(71.4%)患者为阳性。

[89Zr]曲妥珠单抗PET-CT也可用于转移性乳腺癌的HER2检测。有证据表明,转移性乳腺癌的HER2表达与原发灶不同[23]。HER2阴性的乳腺癌可以出现HER2阳性的转移灶。Ulaner等[24]研究了9例初发时HER2为阴性的转移性乳腺癌患者,其中5例在[89Zr]曲妥珠单抗PET-CT检查时显示出高代谢灶,而这5例经活检证实有HER2阳性转移灶2例,另外3例患者的高代谢灶经活检证实HER2阴性。

综上所述,[89Zr]曲妥珠单抗PET-CT可以显示HER2阳性的病灶,但其敏感度和特异度较低。

2 PET-CT与患者对乳腺癌治疗应答的关系 2.1 PET-CT与患者对内分泌治疗应答的关系

近年来,PET-CT被越来越多地应用于评估乳腺癌患者对内分泌治疗的应答情况。Mortimer等[25]发现,治疗后7~10 d,内分泌治疗应答组的FDG摄取值增高约(28.4±23.3)%,而无应答组FDG摄取值无明显变化。乳腺癌患者内分泌治疗后7~10 d,FDG PET-CT检查时出现示踪剂摄取增加的现象称为代谢耀斑。出现代谢耀斑的患者对内分泌治疗较敏感。Dehdashti等[26]的研究发现,如果将FDG摄取增加12%及以上定义为出现代谢耀斑,FDG摄取值对乳腺癌患者内分泌治疗应答的阳性预测值为100%(15例患者全部有应答),阴性预测值为94%(36例患者中有2例有应答)。此外,18F-FES PET-CT中FES的摄取值也可以帮助预测患者对内分泌治疗的应答情况:FES SUVmean低的患者内分泌治疗往往疗效评价为疾病进展[27]。Dehdashti等[26]研究发现,对内分泌治疗有应答的患者18F-FES PET-CT检查的标准摄取值较高(3.5±2.5),而对内分泌治疗无应答的患者则标准摄取值较低(2.1±1.8),两者之间差异有统计学意义(P<0.01)。Linden等[28]也有相同的发现,18F-FES PET-CT中标准摄取值低于1.5的患者对内分泌治疗无应答,而标准摄取值高于1.5的患者中,34%患者对治疗有应答。在最近的一项研究中,以18F-FES PET-CT检查中SUVmax大于1.5为分界值,其预测患者对内分泌治疗有应答的阳性预测值和阴性预测值分别为60%(95%CI:31%~83%)和80%(95%CI:38%~96%)[29]。由此可见,PET-CT对乳腺癌患者内分泌治疗的疗效预测有重要意义,FDG PET-CT中出现代谢耀斑以及在18F-FES PET-CT中较高的基线标准摄取值提示患者对内分泌治疗敏感。

2.2 PET-CT与患者对化疗应答的关系

PET-CT还可以预测乳腺癌患者的化疗效果[30]。1993年,Wahl等[31]证实PET可以在肿瘤缩小前反映细胞及细胞分子的变化。Humbert等[32]总结了六项研究包括382例患者,发现18F-FDG PET-CT预测新辅助化疗是否能达到病理完全缓解的敏感度为0.86(95% CI:0.76~0.93),特异度为0.72(95% CI:0.49~0.87),均高于磁共振。而对于转移性乳腺癌,在2002年时,Stafford等[33]初步证明PET-CT中治疗后FDG摄取值的改变与总体治疗效果相关。Dose等[34]研究了11例转移性乳腺癌患者(26个病灶),分别在化疗前、化疗一周期后、化疗两周期后对其行FDG PET-CT检查,六个周期的化疗结束时,对化疗有应答组的患者在第一周期、第二周期化疗后标准摄取值下降的幅度远大于无应答组,证实FDG摄取值减少越多,其总体治疗效果越好。但是,Couturier等[35]认为,化疗第三周期的FDG摄取值改变才能预测疗效,而不是第一、第二周期。总之,FDG PET-CT可以帮助早期筛选对化疗无应答的患者。

3 PET-CT与乳腺癌患者预后的关系

研究发现,PET-CT中FDG的摄取值与乳腺癌预后相关指标有关,如早期及延迟期有丝分裂计数、Ki-67细胞百分比、核级等[36]。多项研究表明,18F-FDG PET-CT与乳腺癌患者的存活率和无进展生存时间相关[37-42]。Aogi等[39]的研究发现,SUVmax≤6.0的患者预后明显优于SUVmax>6.0的患者(P<0.01);Nakajo等[40]研究结果显示,SUVmax≥4.2预示着患者预后较差(敏感度为80%,特异度为75%,准确度为77%);Song等[41]也发现,SUVmax>6.0的患者其无进展生存期明显短于SUVmax≤6.0的患者;Yue等[42]研究发现,表皮生长因子受体(EGFR)和SUVmax是两个独立的判断三阴性乳腺癌患者预后的因素。以SUVmax等于3.5为分界值,在EGFR高表达组,SUVmax大于等于3.5的患者中位无疾病生存期为7.6个月,而SUVmax小于3.5的患者中位无疾病生存期为11.6个月;在EGFR低表达组,SUVmax大于等于3.5的患者中位无疾病生存期为17.2个月,而SUVmax小于3.5的患者中位无疾病生存期为22.8个月。

18F-FES PET-CT检查中的SUVmax与乳腺癌的预后也存在相关性。Gong等[43]研究发现,对于接受多西他赛和氟维司群联合治疗的患者,在治疗前和治疗两周期后分别行18F-FES PET-CT检查,所有患者治疗后的SUVmax均低于治疗前,且无进展生存期大于12个月的患者,其SUVmax的变化幅度大于无进展生存期小于12个月的患者。

综上所述,在FDG PET-CT中,SUVmax低的患者预后往往比SUVmax高的患者好,而在18F-FES PET-CT中,接受治疗后SUVmax下降多,提示其预后越好。

4 结语

多个研究发现,luminal A型乳腺癌的SUVmax最低,其次是luminal B型,最高的是三阴性和HER2过表达型乳腺癌,但SUVmax诊断乳腺癌分子病理分型的敏感度和特异度均不高,临床应用价值有限。对乳腺癌患者治疗前和治疗后行FDG PET-CT有助于判断其治疗效果及预后。一般来说,患者治疗前SUVmax较低预示其预后较好。如行内分泌治疗,FDG PET-CT中出现代谢耀斑则提示患者对内分泌治疗反应良好,可继续治疗;如行化疗,治疗后FDG摄取值减少越多,则化疗效果越好,否则需考虑更换治疗方案。除FDG PET-CT外,新型示踪剂18F-FES和[89Zr]曲妥珠单抗的应用可为乳腺癌患者的诊疗提供更多的信息。如18F-FES PET-CT检查中SUVmax高的乳腺癌患者可以考虑行内分泌治疗,且对于接受多西他赛和氟维司群联合治疗的患者,治疗后SUVmax下降越多,其预后越好;[89Zr]曲妥珠单抗PET-CT可以显示HER2阳性的病灶,但是其敏感度和特异度较低。

综上所述,PET-CT可以作为一种判断乳腺癌分子病理分型状态的无创检查手段,并且可以用于预测患者的治疗效果和预后。相信随着PET-CT检查技术的进一步发展,PET-CT在乳腺癌个体化治疗中将发挥更大的指导作用。

参考文献
[1] TOSS A, CRISTOFANILLI M. Molecular characterization and targeted therapeutic approaches in breast cancer[J/OL]. Breast Cancer Res, 2015, 17:60.
[2] TURAL D, KIVRAK S D, MUTLU H, et al. Is there any relation between PET-CT SUVmax value and prognostic factors in locally advanced breast cancer?[J]. J BUON, 2015, 20(5): 1282–1286.
[3] GARCÍA VICENTE A M, SORIANO CASTREJÓN Á, LEÓN MARTÍN A, et al. Molecular subtypes of breast cancer:metabolic correlation with 18F-FDG PET/CT[J]. Eur J Nucl Med Mol Imaging, 2013, 40(9): 1304–1311. doi:10.1007/s00259-013-2418-7
[4] MIYAKE K K, NAKAMOTO Y, KANAO S, et al. Journal club:diagnostic value of (18)F-FDG PET/CT and MRI in predicting the clinicopathologic subtypes of invasive breast cancer[J]. AJR Am J Roentgenol, 2014, 203(2): 272–279. doi:10.2214/AJR.13.11971
[5] KITAJIMA K, FUKUSHIMA K, MIYOSHI Y, et al. Association between 18F-FDG uptake and molecular subtype of breast cancer[J]. Eur J Nucl Med Mol Imaging, 2015, 42(9): 1371–1377. doi:10.1007/s00259-015-3070-1
[6] LEE S S, BAE S K, PARK Y S, et al. Correlation of molecular subtypes of invasive ductal carcinoma of breast with glucose metabolism in FDG PET/CT:based on the recommendations of the St. Gallen Consensus Meeting 2013[J]. Nucl Med Mol Imaging, 2017, 51(1): 79–85. doi:10.1007/s13139-016-0444-7
[7] DUFFY M J, HARBECK N, NAP M, et al. Clinical use of biomarkers in breast cancer:Updated guidelines from the European Group on Tumor Markers(EGTM)[J]. Eur J Cancer, 2017, 75: 284–298. doi:10.1016/j.ejca.2017.01.017
[8] EVANGELISTA L, BARETTA Z, VINANTE L, et al. Tumour markers and FDG PET/CT for prediction of disease relapse in patients with breast cancer[J]. Eur J Nucl Med Mol Imaging, 2011, 38(2): 293–301. doi:10.1007/s00259-010-1626-7
[9] KOO H R, PARK J S, KANG K W, et al. 18F-FDG uptake in breast cancer correlates with immunohistochemically defined subtypes[J]. Eur Radiol, 2014, 24(3): 610–618. doi:10.1007/s00330-013-3037-1
[10] COKMERT S, TANRIVERDI O, KARAPOLAT I, et al. The maximum standardized uptake value of metastatic site in 18F-FDG PET/CT predicts molecular subtypes and survival in metastatic breast cancer:An Izmir Oncology Group study[J]. J BUON, 2016, 21(6): 1410–1418.
[11] GOLDHIRSCH A, WINER E P, COATES A S, et al. Personalizing the treatment of women with early breast cancer:highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013[J]. Ann Oncol, 2013, 24(9): 2206–2223. doi:10.1093/annonc/mdt303
[12] KAJÁRY K, TŐKÉS T, DANK M, et al. Correlation of the value of 18F-FDG uptake, described by SUVmax, SUVavg, metabolic tumour volume and total lesion glycolysis, to clinicopathological prognostic factors and biological subtypes in breast cancer[J]. Nucl Med Commun, 2015, 36(1): 28–37. doi:10.1097/MNM.0000000000000217
[13] BASU S, CHEN W, TCHOU J, et al. Comparison of triple-negative and estrogen receptor-positive/progesterone receptor-positive/HER2-negative breast carcinoma using quantitative fluorine-18fluorodeoxyglucose/positron emission tomography imaging parameters:a potentially useful method for disease characterization[J]. Cancer, 2008, 112(5): 995–1000. doi:10.1002/(ISSN)1097-0142
[14] GARCÍA VICENTE A M, SORIANO CASTREJÓN A, RELEA CALATAYUD F, et al. 18F-FDG semi-quantitative parameters and biological prognostic factors in locally advanced breast cancer[J]. Rev Esp Med Nucl Imagen Mol, 2012, 31(6): 308–314.
[15] GEMIGNANI M L, PATIL S, SESHAN V E, et al. Feasibility and predictability of perioperative PET and estrogen receptor ligand in patients with invasive breast cancer[J]. J Nucl Med, 2013, 54(10): 1697–1702. doi:10.2967/jnumed.112.113373
[16] PETERSON L M, MANKOFF D A, LAWTON T, et al. Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol[J]. J Nucl Med, 2008, 49(3): 367–374. doi:10.2967/jnumed.107.047506
[17] YANG Z, SUN Y, XU X, et al. The assessment of estrogen receptor status and its intratumoral heterogeneity in patients with breast cancer by using 18F-fluoroestradiol PET/CT[J]. Clin Nucl Med, 2017, 42(6): 421–427. doi:10.1097/RLU.0000000000001587
[18] EVANGELISTA L, GUARNERI V, CONTE P F. 18F-fluoroestradiol positron emission tomography in breast cancer patients:systematic review of the literature & meta-analysis[J]. Curr Radiopharm, 2016, 9(3): 244–257.
[19] MCKEAGE K, PERRY C M. Trastuzumab:a review of its use in the treatment of metastatic breast cancer overexpressing HER2[J]. Drugs, 2002, 62(1): 209–243. doi:10.2165/00003495-200262010-00008
[20] CHANG A J, DESILVA R, JAIN S, et al. 89Zr-radiolabeled trastuzumab imaging in orthotopic and metastatic breast tumors[J]. Pharmaceuticals(Basel), 2012, 5(1): 79–93.
[21] LAFOREST R, LAPI S E, OYAMA R, et al. [89Zr]Trastuzumab:evaluation of radiation dosimetry, safety, and optimal imaging parameters in women with HER2-positive breast cancer[J]. Mol Imaging Biol, 2016, 18(6): 952–959. doi:10.1007/s11307-016-0951-z
[22] GEBHART G, LAMBERTS L E, WIMANA Z, et al. Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine(T-DM1):the ZEPHIR trial[J]. Ann Oncol, 2016, 27(4): 619–624. doi:10.1093/annonc/mdv577
[23] NⅡKURA N, LIU J, HAYASHI N, et al. Loss of human epidermal growth factor receptor 2(HER2) expression in metastatic sites of HER2-overexpressing primary breast tumors[J]. J Clin Oncol, 2012, 30(6): 593–599. doi:10.1200/JCO.2010.33.8889
[24] ULANER G A, HYMAN D M, ROSS D S, et al. Detection of HER2-positive metastases in patients with HER2-negative primary breast cancer using 89Zr-trastuzumab PET/CT[J]. J Nucl Med, 2016, 57(10): 1523–1528. doi:10.2967/jnumed.115.172031
[25] MORTIMER J E, DEHDASHTI F, SIEGEL B A, et al. Metabolic flare:indicator of hormone responsiveness in advanced breast cancer[J]. J Clin Oncol, 2001, 19(11): 27–97.
[26] DEHDASHTI F, MORTIMER J E, TRINKAUS K, et al. PET-based estradiol challenge as a predictive biomarker of response to endocrine therapy in women with estrogen-receptor-positive breast cancer[J]. Breast Cancer Res Treat, 2009, 113(3): 509–517. doi:10.1007/s10549-008-9953-0
[27] PETERSON L M, KURLAND B F, SCHUBERT E K, et al. A phase 2 study of 16α-[18F]-fluoro-17β-estradiol positron emission tomography (FES-PET) as a marker of hormone sensitivity in metastatic breast cancer (MBC)[J]. Mol Imaging Biol, 2014, 16(3): 431–440. doi:10.1007/s11307-013-0699-7
[28] LINDEN H M, STEKHOVA S A, LINK J M, et al. Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer[J]. J Clin Oncol, 2006, 24(18): 2793–2799. doi:10.1200/JCO.2005.04.3810
[29] VAN KRUCHTEN M, GLAUDEMANS A W J M, DE VRIES E F J, et al. Positron emission tomography of tumour[18F]fluoroestradiol uptake in patients with acquired hormone-resistant metastatic breast cancer prior to oestradiol therapy[J]. Eur J Nucl Med Mol Imaging, 2015, 42(11): 1674–1681. doi:10.1007/s00259-015-3107-5
[30] LIU Q, WANG C, LI P, et al. The role of (18)F-FDG PET/CT and MRI in assessing pathological complete response to neoadjuvant chemotherapy in patients with breast cancer:a systematic review and meta-analysis[J]. Biomed Res Int, 2016, 37(46): 23–32.
[31] WAHL R L, ZASADNY K, HELVIE M, et al. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography:initial evaluation[J]. J Clin Oncol, 1993, 11(11): 2101–2111. doi:10.1200/JCO.1993.11.11.2101
[32] HUMBERT O, COCHET A, COUDERT B, et al. Role of positron emission tomography for the monitoring of response to therapy in breast cancer[J]. Oncologist, 2015, 20(2): 94–104.
[33] STAFFORD S E, GRALOW J R, SCHUBERT E K, et al. Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy[J]. Acad Radiol, 2002, 9(8): 913–921. doi:10.1016/S1076-6332(03)80461-0
[34] DOSE S J, BADER M, JENICKE L, et al. Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG PET[J]. J Nucl Med, 2005, 46(7): 1144–1150.
[35] COUTURIER O, JERUSALEM G, N'GUYEN J M, et al. Sequential positron emission tomography using[J]. Clin Cancer Res, 2006, 12(21): 6437–6443. doi:10.1158/1078-0432.CCR-06-0383
[36] SHIMODA W, HAYASHI M, MURAKAMI K, et al. The relationship between FDG uptake in PET scans and biological behavior in breast cancer[J]. Breast Cancer, 2007, 14(3): 260–268. doi:10.2325/jbcs.14.260
[37] AKIMOTO E, KADOYA T, KAJITANI K, et al. Role of 18F-PET/CT in predicting prognosis of patients with breast cancer after neoadjuvant chemotherapy[J]. Clin Breast Cancer, 2017, pii:S1526-8209(17): 30037–X.
[38] KIM T H, YOON J K, KANG D K, et al. Correlation between F-18 fluorodeoxyglucose positron emission tomography metabolic parameters and dynamic contrast-enhanced MRI-derived perfusion data in patients with invasive ductal breast carcinoma[J]. Ann Surg Oncol, 2015, 22(12): 3866–3872. doi:10.1245/s10434-015-4526-z
[39] AOGI K, KADOYA T, SUGAWARA Y, et al. Utility of 18F FDG-PET/CT for predicting prognosis of luminal-type breast cancer[J]. Breast Cancer Res Treat, 2015, 150(1): 209–217. doi:10.1007/s10549-015-3303-9
[40] NAKAJO M, KAJIYA Y, KANEKO T, et al. FDG PET/CT and diffusion-weighted imaging for breast cancer:prognostic value of maximum standardized uptake values and apparent diffusion coefficient values of the primary lesion[J]. Eur J Nucl Med Mol Imaging, 2010, 37(11): 2011–2020. doi:10.1007/s00259-010-1529-7
[41] SONG B I, HONG C M, LEE H J, et al. Prognostic value of primary tumor uptake on F-18FDG PET/CT in patients with invasive ductal breast cancer[J]. Nucl Med Mol Imaging, 2011, 45(2): 117–124. doi:10.1007/s13139-011-0081-0
[42] YUE Y, CUI X, BOSE S, et al. Stratifying triple-negative breast cancer prognosis using 18F-FDG-PET/CT imaging[J]. Breast Cancer Res Treat, 2015, 153(3): 607–616. doi:10.1007/s10549-015-3558-1
[43] GONG C, YANG Z, SUN Y, et al. A preliminary study of 18F-FES PET/CT in predicting metastatic breast cancer in patients receiving docetaxel or fulvestrant with docetaxel[J]. Sci Rep, 2017, 7(1): 6584. doi:10.1038/s41598-017-06903-8

文章信息

潘静颖, 何梦烨, 柯蔚, 胡梦琳, 王美芳, 沈朋
PAN Jingying, HE Mengye, KE Wei, HU Menglin, WANG Meifang, SHEN Peng
PET-CT与乳腺癌分子病理分型、治疗反应及预后的相关性研究进展
Advances on correlation of PET-CT findings with breast cancer molecular subtypes, treatment response and prognosis
浙江大学学报(医学版), 2017, 46(5): 473-480
Journal of Zhejiang University(Medical Sciences), 2017, 46(5): 473-480.
http://dx.doi.org/10.3785/j.issn.1008-9292.2017.10.04

文章历史

收稿日期: 2017-07-07
接受日期: 2017-09-06
基金项目: 浙江省公益性技术应用研究计划(2013C37025)
第一作者: 潘静颖(1992-), 女, 硕士研究生, 主要从事乳腺癌的诊疗研究; E-mail:jsczpjy@sina.cn; http://orcid.org/0000-0002-6804-7951
通讯作者: 沈朋(1962-), 女, 硕士, 主任医师, 硕士生导师, 主要从事乳腺癌的诊疗研究; E-mail:shenp@zju.edu.cn; http://orcid.org/0000-0002-1123-9848

工作空间