文章快速检索  
  高级检索

NLRP3炎症小体与儿童自身炎症性疾病研究进展
李艳蝶, 卢美萍     
浙江大学医学院附属儿童医院风湿免疫变态反应科, 浙江 杭州 310003
摘要:儿童自身炎症性疾病(AID)是难治性疾病之一,发病机制尚未完全明确。近年来大量研究表明,NLRP3炎症小体失调在儿童AID的发生、发展中具有重要作用。NLRP3炎症小体是细胞内的一种多蛋白复合物,它能激活半胱氨酸天冬氨酸特异蛋白酶1(caspase-1),进一步促进炎症因子IL-1β和IL-18的成熟和分泌,从而促进细胞凋亡,调节固有免疫应答。IL-1受体拮抗剂(Anakinra)和IL-1β单克隆抗体(Canakinumab)治疗儿童AID取得了较好的疗效。本文就NLRP3炎症小体在该类疾病发病机制中的研究进展作一综述。
关键词多蛋白复合物     自身免疫疾病     白细胞介素1β     染色体障碍     综述    
Progress on the study of NLRP3 inflammasome in autoinflammatory diseases of children
LI Yandie, LU Meiping     
Department of Rheumatology Immunology & Allergy, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
Corresponding author: LU Meiping, E-mail:meipinglu@zju.edu.cn; http://orcid.org/0000-0002-3264-6397
Abstract: Autoinflammatory diseases (AID) in childhood is one of refractory diseases, whose pathogenesis is not completely clear. In recent years, a large number of studies have shown that NLRP3 inflammasome plays an important role in the development of AIDs in children. Inflammasome is a cytosolic multiprotein complex that can activate cysteinyl aspartate-specific protease-1 (caspase-1), to further promote the maturation and secretion of proinflammatory cytokines IL-1β and IL-18 as well as pyroptosis and regulate innate immune response. IL-1 receptor antagonist (Anakinra) and IL-1β monoclonal antibody (Canakinumab) have good therapeutic effects in children with AIDs. This article reviews the research progress of NLRP3 inflammasome in the pathogenesis of autoinflammatory diseases.
Key words: Multiprotein complexes     Autoimmune diseases     Interleukin-1 beta     Chromosome disorders     Review    

儿童自身炎症性疾病(autoinflammatory diseases,AID)通常是指一组由固有免疫参与介导的遗传性疾病,但近年来发现有些AID不具有明确的遗传史,受多种基因和环境因素共同作用[1]。儿童AID主要包括①遗传性周期热综合征:冷炎素相关周期热综合征(cryopyrin-associated periodic syndromes,CAPS,包括家族性寒冷性自身炎症综合征、Muckle-Wells综合征、新生儿期发病的多系统炎性疾病),家族性地中海热(familial mediteranean fever,FMF),高IgD伴周期热综合征,TNF受体相关周期热综合征[2];②化脓性(非感染性)疾病:无菌性化脓性关节炎、坏疽性脓皮病、痤疮综合征(PAPA综合征)、Majeed综合征;③免疫介导的肉芽肿疾病:Blau综合征、克罗恩病;④特发性发热综合征:幼年特发性关节炎(juvenile idiopathic arthritis,JIA)、白塞综合征等[3]。该组疾病表现为反复的发热、皮疹、关节痛、关节炎等全身炎症反应,IL-1家族细胞因子(主要包括IL-1β和IL-18)水平升高[4]。NLRP3炎症小体是由受体蛋白(NLR蛋白)、接头蛋白[凋亡相关斑点样蛋白(apoptosis associated speck-like protein containing a caspase recruitment domain,ASC)]和效应蛋白(pro-caspase-1)构成的多蛋白复合物[5],它通过激活半胱氨酸天冬氨酸特异性蛋白酶1(caspase-1),促进IL-1β和IL-18的成熟和分泌,参与炎症反应[6]。近些年关于NLRP3炎症小体与AID关系的研究逐渐增多。已有研究显示,IL-1受体拮抗剂(Anakinra)和IL-1β单克隆抗体(Canakinumab)对儿童AID患者取有较好的疗效[7]。本文就NLRP3炎症小体参与儿童AID发病机制的研究进展作一综述。

1 NLRP3炎症小体与冷炎素相关周期热综合征

CAPS为常染色体显性遗传病,系NLRP3基因获得性功能突变所致[8]。NLRP3基因定位于1号染色体短臂上(即1q44),编码NLRP3蛋白(又称冷炎素,cryopyrin)[9]。目前NLRP3基因共有177种突变,多位于3号外显子或4号内含子上[10]。其中,T348M、D303N突变与CAPS病情严重程度相关[11]。有些患者生殖细胞中没有NLRP3突变,但是体细胞嵌合体中存在NLRP3突变[12]。家族性寒冷性自身炎症综合征患者外周血白细胞中NLRP3杂合突变使NLRP3炎症小体过度激活,进而起病[13]。Muckle-Wells综合征是由于NLRP3 NACHT结构域的错义突变导致NLRP3蛋白功能增强使NLRP3炎症小体持续活化。研究显示,NLRP3 T348M基因参与Muckle-Wells综合征的发生[14]。中国汉族一例Muckle-Wells综合征患者NLRP3中p.D31V基因突变促进NLRP3炎症小体的激活[15]。新生儿期发病的多系统炎性疾病患者脑脊液可检测到NLRP3基因突变,但其血清中未检测到。测序整个NLRP3基因发现外显子4(G755R、G755A)和外显子6(Y859C)的错义突变参与CAPS的发病[16]。此外,Yu等[17]发现NLRP3炎症小体缺陷小鼠模型IL-1产生过剩,导致CAPS炎症症状。

CAPS的诊断主要依据典型临床表现,基因检测有助于诊断。Anakinra治疗Muckle-Wells综合征和新生儿期发病的多系统炎性疾病疗效显著,但伴有关节严重破坏的CAPS患者对Anakinra应答不佳[18];IL-1β单克隆抗体Canakinumab可使97%的CAPS患者症状改善[19]

2 NLRP3炎症小体与家族性地中海热

FMF是由编码Pyrin蛋白的MEFV基因突变引起的常染色体隐性遗传病[20]。Pyrin主要表达于中性粒细胞和单核细胞的细胞质中,其热蛋白结构域(PYD)可竞争性地与ASC分子PYD结合,从而减少NLRP3与ASC结合,抑制NLRP3炎症小体形成。MVEF突变系功能缺失性突变,可导致Pyrin数量减少或功能改变,致使NLRP3炎症小体过度活化。Repa等[21]发现,FMF患者新分离的白细胞中NLRP3和caspase-1表达水平较对照组下降。Mitroulis等[22]发现无症状FMF患者中性粒细胞NLRP3 mRNA水平降低。除MEFV基因突变外,Timerman等[23]在FMF样周期性发热综合征患者中还发现了NLRP3基因突变,猜测其为多基因遗传病。Chae等[24]的FMF动物模型也证实,单核细胞分泌IL-1β是通过NLRP3介导的。

基因检查有助于FMF的诊断。治疗首选秋水仙碱。但Manukyan等[25]发现使用秋水仙碱治疗一些难治性FMF时,NLRP3和MEFV的表达量较健康对照组增加,这可能是秋水仙碱疗效不佳的原因。此外,随机对照研究结果显示,Anakinra和Canakinumab治疗秋水仙碱抵抗的FMF患者安全、有效[26]

3 NLRP3炎症小体与幼年特发性关节炎

JIA是最常见的儿童风湿性疾病之一,共七个亚型,其中全身型JIA是最严重的亚型。NLRP3基因突变在全身型JIA的发生发展中具有调控作用[27]。Tadaki等[28]通过研究50例全身型JIA患者发现,NLRP基因19q13.42从头重复突变与全身型JIA相关。急性活动期全身型JIA患者单个核细胞微阵列分析结果提示IL-1β以及IL-1受体基因表达上调[29]。在日本发现一例3岁JIA患儿存在NLRP3 E378K位点基因突变,且血清IL-1β、IL-6和IL-18水平明显升高[30]。中国台湾的一项研究表明,携带NLRP3 rs4353135 G等位基因增加了少关节型或多关节型JIA发生的风险,该基因与高水平的CRP和红细胞沉降率正相关,而rs4353135、rs2043211单核苷酸多态性与全身型JIA患者易感性不相关[31]。Day等[32]研究结果显示,银屑病性关节炎与MEFV SNP rs224204(P=0.025)和NLRP3 SNP rs3806265(P=0.04)存在显著的相关性。Lamot等[33]研究结果表明,NLRP3和TLR4是全身性自身炎症性疾病最重要的基因,CXCR4和PTPN12共同参与附着点相关性关节炎的病理生理机制。随机双盲对照研究结果显示,Canakinumab治疗全身型JIA是安全、有效的,全身型JIA患者早期使用Anakinra或Canakinumab可延长疾病的稳定期[34]

4 NLRP3炎性小体与Majeed综合征

Majeed综合征是新生儿期常染色体隐性遗传病,为脂质2(LPIN2)基因突变所致,可编码LPIN2蛋白[35]。正常情况下,LPIN2通过抑制嘌呤能离子通道型受体7(P2X7R)来抑制NLRP3炎症小体的活化。Majeed综合征患者LPIN2基因突变,抑制作用减弱,炎症小体活化增强[35]。Scianaro等[36]的研究结果显示,慢性反复性多发性骨髓炎活动期NLRP3 mRNA表达水平较健康对照组和疾病缓解期组明显升高。治疗上,Herlin等[37]的研究结果显示,IL-1阻滞剂(Anakinra或Canakinumab)治疗Majeed综合征疗效显著,患者的临床症状及实验室检查结果明显改善。

5 NLRP3炎症小体与PAPA综合征

PAPA综合征是罕见的常染色体显性遗传病,是由PSTPIPI基因突变所致,后者又称CD2结合蛋白1(CD2BP1)。PSTPIPI基因突变(A230T、E250Q)可致CD2BP1的过度磷酸化,增强Pyrin-CD2BP1的结合,干扰Pyrin对NLRP3炎症小体的负性抑制作用,导致促炎细胞因子过度产生,从而引起PAPA综合征[38]。伴有骨破坏的PAPA综合征患者经Anakinra治疗后临床症状改善,6个月后影像学表现明显改善[39]

除上述AID外,NLRP3还参与其他AID的发病机制。如在自身炎症性神经系统疾病的家系中通过基因测序检测到NLRP3 c.864C>G(p.I288M)上存在突变[40];也有报道儿童Schnitzler综合征患者出现NLRP3 V198M突变[41]

综上所述,大量研究证实NLRP3炎症小体与多种AID相关,但发病机制尚未完全明确。NLRP3炎症通路上任何蛋白表达失调都会影响疾病的发生、发展。期待能有更多的研究来证实该炎症小体在AID中的作用,为AID的治疗提供新的方案。

参考文献
[1] ÁLVAREZ-ERRICO D, VENTO-TORMO R, BALLESTAR E. Genetic and epigenetic determinants in autoinflammatory diseases[J]. Front Immunol, 2017, 8: 318.
[2] PARK H, BOURLA A B, KASTNER D L, et al. Lighting the fires within:the cell biology of autoinflammatory diseases[J]. Nat Rev Immunol, 2012, 12(8): 570–580. doi:10.1038/nri3261
[3] 李冀, 宋红梅. 自身炎症性疾病分类[J]. 协和医学杂志, 2014, 5(4): 450–454. LI Ji, SONG Hongmei. Classification of inflammatory diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(4): 450–454. (in Chinese)
[4] HOFFMAN H M, BRODERICK L. The role of the inflammasome in patients with autoinflammatory diseases[J]. J Allergy Clin Immunol, 2016, 138(1): 3–14. doi:10.1016/j.jaci.2016.05.001
[5] TONG Y, DING Z H, ZHAN F X, et al. The NLRP3 inflammasome and stroke[J]. Int J Clin Exp Med, 2015, 8(4): 4787–4794.
[6] KANG M J, JO S G, KIM D J, et al. NLRP3 inflammasome mediates interleukin-1beta production in immune cells in response to Acinetobacter baumannii and contributes to pulmonary inflammation in mice[J]. Immunology, 2017, 150(4): 495–505. doi:10.1111/imm.2017.150.issue-4
[7] CUSH J J. Autoinflammatory syndromes[J]. Dermatol Clin, 2013, 31(3): 471–480. doi:10.1016/j.det.2013.05.001
[8] AKSENTIJEVICH I, NOWAK M, MALLAH M, et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory dis-ease (NOMID):a new member of the expanding family of pyrin-associated autoinflammatory diseases[J]. Arthritis Rheum, 2012, 46(12): 3340–3348.
[9] EROGLU F K, KASAPCOPUR O, BEŞBAŞN, et al. Genetic and clinical features of cryopyrin-associated periodic syndromes in Turkish children[J]. Clin Exp Rheumatol, 2016, 34(6 Suppl 102): S115–S120.
[10] SARRABAY G, GRANDEMANGE S, TOUITOU I. Diagnosis of cryopyrin-associated periodic syndrome:challenges, recommendations and emerging concepts[J]. Expert Rev Clin Immunol, 2015, 11(7): 827–835. doi:10.1586/1744666X.2015.1047765
[11] NAKAGAWA K, GONZALEZ-ROCA E, SOUTO A, et al. Somatic NLRP3 mosaicism in Muckle-Wells syndrome. A genetic mechanism shared by different phenotypes of cryopyrin-associated periodic syndromes[J]. Ann Rheum Dis, 2015, 74(3): 603–610. doi:10.1136/annrheumdis-2013-204361
[12] MENSA-VILARO A, TERESA B M, MAGRI G, et al. Brief report:late-onset cryopyrin-associated periodic syndrome due to myeloid-restricted somatic NLRP3 mosaicism[J]. Arthritis Rheumatol, 2016, 68(12): 3035–3041. doi:10.1002/art.39770
[13] BRODERICK L, DE NARDO D, FRANKLIN B S, et al. The inflammasomes and autoinflammatory syndromes[J]. Annu Rev Pathol, 2015, 10: 395–424. doi:10.1146/annurev-pathol-012414-040431
[14] NAZ V E, CARO G D, PINEDOi M F, et al. Muckle-Wells syndrome:a case report with an NLRP3 T348M mutation[J]. Pediatr Dermatol, 2016, 33(5): e311–e314. doi:10.1111/pde.2016.33.issue-5
[15] HU J, ZHU Y, ZHANG J Z, et al. A novel mutation in the pyrin domain of the NOD-like receptor family pyrin domain containing protein 3 in Muckle-Wells syndrome[J]. Chin Med J (Engl), 2017, 130(5): 586–593. doi:10.4103/0366-6999.200537
[16] STOJANOV S, WEISS M, LOHSE P, et al. A novel CIAS1 mutation and plasma/cerebrospinal fluid cytokine profile in a German patient with neonatal-onset multisystem inflammatory disease responsive to methotrexate therapy[J]. Pediatrics, 2004, 114(1): e124–e127. doi:10.1542/peds.114.1.e124
[17] YU J R, LESLIE K S. Cryopyrin-associated periodic syndrome:an update on diagnosis and treatment response[J]. Curr Allergy Asthma Rep, 2011, 11(1): 12–20. doi:10.1007/s11882-010-0160-9
[18] FINETTI M, OMENETTI A, FEDERICI S, et al. Chronic infantile neurological cutaneous and articular (CINCA) syndrome:a review[J]. Orphanet J Rare Dis, 2016, 11(1): 167–177. doi:10.1186/s13023-016-0542-8
[19] NEVEN B, PRIEUR A M, QUARTIER DIT MAIRE P. Cryopyrinopathies:update on pathogenesis and treatment[J]. Nat Clin Pract Rheumatol, 2008, 4(9): 481–489. doi:10.1038/ncprheum0874
[20] ALGHAMDI M. Familial Mediterranean fever, review of the literature[J]. Clin Rheumatol, 2017, 36(8): 1707–1713. doi:10.1007/s10067-017-3715-5
[21] REPA A, BERTSIAS G K, PETRAKI E, et al. Dysregulated production of interleukin-1beta upon activation of the NLRP3 inflammasome in patients with familial Mediterranean fever[J]. Hum Immunol, 2015, 76(7): 488–495. doi:10.1016/j.humimm.2015.06.007
[22] MITROULIS I, KOURTZELIS I, KAMBAS K, et al. Evidence for the involvement of mTOR inhibition and basal autophagy in familial Mediterranean fever phenotype[J]. Hum Immunol, 2011, 72(2): 135–138. doi:10.1016/j.humimm.2010.11.006
[23] TIMERMAN D, FRANK N Y. Novel double heterozygous mutations in MEFV and NLRP3 genes in a patient with familial Mediterranean fever[J]. J Clin Rheumatol, 2013, 19(8): 452–453. doi:10.1097/RHU.0000000000000044
[24] CHAE J J, CHO Y H, LEE G S, et al. Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin-1β activation and severe autoinflammation in mice[J]. Immunity, 2011, 34(5): 755–768. doi:10.1016/j.immuni.2011.02.020
[25] MANUKYAN G, PETREK M, NAVRATILOVA Z, et al. Transcriptional activity of neutrophils exposed to high doses of colchicine:short communication[J]. J Biol Regul Homeost Agents, 2015, 29(1): 125–130.
[26] BEN-ZVI I, KUKUY O, GIAT E, et al. Anakinra for colchicine-resistant familial mediterranean fever:a randomized, double-blind, placebo-controlled trial[J]. Arthritis Rheumatol, 2017, 69(4): 854–862. doi:10.1002/art.v69.4
[27] HERSH A O, PRAHALAD S. Immunogenetics of juvenile idiopathic arthritis:a com prehensive review[J]. J Autoimmun, 2015, 64(1): 113–124.
[28] TADAKI H, SAITSU H, NISHIMURA-TDAKI A, et al. De novo 19q13.42 duplications involving NLRP gene cluster in a patient with systemic-onset juvenile idiopathic arthritis[J]. J Hum Genet, 2011, 56(5): 343–347. doi:10.1038/jhg.2011.16
[29] HAYEM F, HAYEM G. Still's disease and the mitochondrion:the other face of an old friend?[J]. Med Hypotheses, 2012, 79(2): 136–137. doi:10.1016/j.mehy.2012.04.009
[30] OHNISHI H, TERAMOTO T, IWATA H, et al. Characterization of NLRP3 variants in Japanese cryopyrin-associated periodic syndrome patients[J]. J Clin Immunol, 2012, 32(2): 221–229. doi:10.1007/s10875-011-9629-0
[31] YANG C A, HUANG S T, CHANG B L. Association of NLRP3 and CARD8 genetic polymorphisms with juvenile idiopathic arthritis in a Taiwanese population[J]. Scand J Rheumatol, 2014, 43(2): 146–152. doi:10.3109/03009742.2013.834962
[32] DAY T G, RAMANAN A V, HINKS A, et al. Autoinflammatory genes and susceptibility to psoriatic juvenile idiopathic arthritis[J]. Arthritis Rheum, 2008, 58(7): 2142–2146. doi:10.1002/(ISSN)1529-0131
[33] LAMOT L, BOROVECKI F, TAMBIC B L, et al. Aberrant expression of shared master-key genes contributes to the immunopathogenesis in patients with juvenile spondyloarthritis[J]. PLoS One, 2014, 9(12): e115416. doi:10.1371/journal.pone.0115416
[34] HORNEFF G, PEITZ J, KEKOW J, et al. Canakinumab for first line steroid-free treatment in a child with systemic-onset juvenile idiopathic arthritis[J]. Scand J Rheumatol, 2017: 1–2.
[35] LORDEN G, GARCIA S I, PABLO N, et al. Lipin-2 regulates NLRP3 inflammasome by affecting P2X7 receptor activation[J]. Exp Med, 2017, 214(2): 511–528. doi:10.1084/jem.20161452
[36] SCIANARO R, INSALACO A, LAUDIERO L B, et al. Deregulation of the IL-1β axis in chronic recurrent multifocal osteomyelitis[J]. Pediatr Rheumatol, 2014, 12(30): 1–6.
[37] HERLIN T, FⅡGAARD B, BJERRE M, et al. Efficacy of anti-IL-1 treatment in Majeed syndrome[J]. Ann Rheum Dis, 2013, 72(3): 410–413. doi:10.1136/annrheumdis-2012-201818
[38] SHOHAM N G, CENTOLA M, MANSFIELD E, et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway[J]. Proc Natl Acad Sci U S A, 2003, 100(23): 13501–13506. doi:10.1073/pnas.2135380100
[39] CAORSI R, PICCO P, BUONCOMPAGNI A, et al. Osteolytic lesion in PAPA syndrome responding to anti-interleukin 1 treatment[J]. J Rheumatol, 2014, 41(11): 2333–2334. doi:10.3899/jrheum.140060
[40] SALSANOL E, RIZZO A, BEDINI G, et al. An autoinflammatory neurological disease due to interleukin 6 hypersecretion[J]. J Neuroinflammation, 2013, 10(1): 29–36.
[41] LOOCK J, LAMPRECHT P, TIMMANN C, et al. Genetic predisposition (NLRP3 V198M mutation) for IL-1-mediated inflammation in a patient with Schnitzler syndrome[J]. J Allergy Clin Immunol, 2010, 125(2): 500–502. doi:10.1016/j.jaci.2009.10.066

文章信息

李艳蝶, 卢美萍
LI Yandie, LU Meiping
NLRP3炎症小体与儿童自身炎症性疾病研究进展
Progress on the study of NLRP3 inflammasome in autoinflammatory diseases of children
浙江大学学报(医学版), 2017, 46(4): 449-453
Journal of Zhejiang University(Medical Sciences), 2017, 46(4): 449-453.
http://dx.doi.org/10.3785/j.issn.1008-9292.2017.08.17

文章历史

收稿日期: 2017-04-28
接受日期: 2017-05-03
基金项目: 浙江省科学技术厅公益性技术应用研究计划(2013C37025)
第一作者: 李艳蝶(1990-), 女, 硕士研究生, 主要从事风湿免疫过敏性疾病研究; E-mail:21518290@zju.edu.cn; http://orcid.org/0000-0003-2082-6101
通讯作者: 卢美萍(1966-), 女, 博士, 主任医师, 博士生导师, 主要从事呼吸系统、风湿免疫过敏性疾病研究; E-mail:meipinglu@zju.edu.cn; http://orcid.org/0000-0002-3264-6397

工作空间