2. 蚌埠市第三人民医院普外肿瘤科, 安徽 蚌埠 233000;
3. 蚌埠医学院生物化学与分子生物学教研室, 安徽 蚌埠 233000
2. Department of Oncology, the Third People's Hospital of Bengbu, Bengbu 233000, China;
3. Department of Biochemistry & Molecular Biology, Bengbu Medical College, Bengbu 233000, China
乳腺癌是全球女性因癌症死亡的主要原因[1]。紫杉醇通过抑制有丝分裂,诱导细胞死亡,在乳腺癌的治疗中起着至关重要的作用[2]。肿瘤细胞对紫杉醇耐药性的产生是限制紫杉醇临床应用的主要原因之一[3],其中机制目前尚未阐明。长链非编码RNA(long non-coding RNA,lncRNA)是长度超过200 nt但不编码蛋白质的RNA分子,主要在转录等水平发挥多种生物学功能。大量证据表明,lncRNA在乳腺癌细胞的耐药中发挥重要作用,如H19的表达下调可以降低乳腺癌雌激素受体α过表达产生的耐药影响,提高对紫杉醇的敏感性[4]。lncRNA RP11超家族在乳腺癌中表达水平的改变可以影响乳腺癌细胞的侵袭迁移和增殖[5]。本研究前期通过生物信息学软件发现lncRNA RP11超家族成员lncRNA RP11-770J1.3与乳腺癌密切相关,其与跨膜蛋白25(transmembrane protein 25,TMEM25)也具有相关性。有研究发现,TMEM25与肿瘤的发生发展密切相关,其在乳腺癌中的表达与CMF(环磷酰胺、甲氨蝶呤和氟脲嘧啶)辅助阿霉素化疗有关[6-7]。本研究主要探讨lncRNA RP11-770J1.3和TMEM25对紫杉醇耐药的人乳腺癌细胞株耐药生物学活性的影响和相关分子生物学机制,为临床逆转耐药研究提供依据。
1 材料与方法 1.1 材料与试剂人乳腺癌细胞株MCF-7购自中国科学院上海生命科学研究院细胞资源中心;紫杉醇耐药株MCF-7/PR由本实验室构建保存[8], ABI 7500/7500 Fast实时荧光定量PCR仪购自美国应用生物系统公司。FBS购自美国Hyclone公司;DMEM高糖培养基购自美国Gibco公司;焦炭酸二乙酯购自美国Sigma公司;紫杉醇、TRIzol试剂和Lipofectamine 2000购自美国Invitrogen公司;逆转录试剂盒、SYBR® GreenI购自宝生物工程(大连)有限公司;lncRNA RP11-770J1.3和TMEM25干扰片段购自上海吉玛制药技术有限公司;聚偏二氟乙烯(PVDF)膜、电化学发光(ECL)试剂盒购自美国Millipore公司;一抗TMEM25、多药耐药相关蛋白(multidrug resistance-associated protein,MRP)、乳腺癌耐药蛋白(breast cancer resistance protein,BCRP)、多药耐药基因1(multidrug resistance,MDR1)及其编码产物P-gp(P-glycoprotein)、β-actin购自美国Proteintech公司;辣根过氧化物酶标记的羊抗兔、羊抗鼠二抗购自北京中杉金桥生物技术有限公司;所有引物合成和DNA序列测定由南京金斯瑞生物科技有限公司完成。
1.2 细胞培养复苏细胞,使其能在含有10 μg/mL浓度的紫杉醇培养液中稳定生长。MCF-7及MCF-7/PR细胞株均在含10%FBS的DMEM高糖培养基、37 ℃、5%二氧化碳饱和湿度条件下培养,每3~4 d传代一次。所有实验均采用对数生长期细胞。
1.3 lncRNA RP11-770J1.3和TMEM25干扰片段转染及筛选取MCF-7/PR对数生长期细胞,用0.25%胰蛋白酶消化后离心计数并调整细胞密度为4×105/mL,接种于六孔板中,每孔加细胞悬液2 mL,第2天细胞贴壁达70%~80%。分别将浓度为20 μmol/L各三个lncRNA RP11-770J1.3和TMEM25干扰片段(表 1)5 μL稀释于250 μL无血清培养基中,用5 μL Lipofectamine 2000进行同样稀释,室温静置5 min,将稀释好的干扰片段与Lipofectamine 2000混匀后再静置20 min,轻柔地加入六孔板中,筛选lncRNA RP11-770J1.3和TMEM25的特异性干扰片段(lncRNA RP11 siRNA和TMEM25 siRNA)。相对于非特异性siRNA的空白对照组,lncRNA RP11 siRNA-2和TMEM25 siRNA-2的干扰效率均达到50%(均P<0.01),见图 1。因此,采用lncRNA RP11 siRNA-2和TMEM25 siRNA-2进行后续试验。
干扰片段名称 | 序列(5′→3′) | 片段长度(bp) |
lncRNA RP11-770J1.3-1 | 正义:GCAUGGUCCUACAGAAAUGTT 反义:CAUUUCUGUAGGACCAUGCTT |
21 |
lncRNA RP11-770J1.3-2 | 正义:CAGGGUGAAUUAUAGUACATT 反义:UGUACUAUAAUUCACCCUATT |
21 |
lncRNA RP11-770J1.3-3 | 正义:GAGCGCAGUUCAACAGGAAATT 反义:UUUCCUGUUGACUGCGCUCTT |
21 |
TMEM25-1 | 正义:GCACCCAUCUCUGAUAUCATT 反义:UGAUAUCUGUGUUGGGUGCTT |
21 |
TMEM25-2 | 正义:GGCUAUAUCUAUCGAGUGUTT 反义:ACACUCGAUAGAUAUAGCCTT |
21 |
TMEM25-3 | 正义:GCAUUUCACUGGGCUGUAATT 反义:UUACAGCCCAGUGAAAUGCTT |
21 |
![]() |
A:lncRNA RP11-770J1.3和TMEM25的mRNA水平;B: TMEM25的蛋白表达.SR: RP11 siRNA; ST: TMEM25 siRNA.与紫杉醇对照组比较,**P<0.01. 图 1 三种lncRNA RP11-770J1.3和TMEM25干扰片段的筛选 Fig. 1 Screening of lncRNA RP11-770J1.3 and TMEM25 synthetic interferences |
用0.25%胰蛋白酶消化细胞,调整细胞密度为5×104/mL,接种于96孔板中,每孔加细胞悬液100 μL,24 h后加入不同浓度的紫杉醇(0、3、6、9、12、15、18 μg/mL),72 h后终止培养,吸出培养基,每孔加入200 μL 10%三氯乙酸,4 ℃固定50 min,双蒸水洗涤五次,室温下干燥;加入100 μL 0.4%磺酰罗丹明B(SRB)染液染色30 min,1%乙酸溶液洗涤五次后干燥;每孔加入150 μL 10 mmol/L三羟甲基氨基甲烷(Tris-base)溶液,摇床上剧烈振荡15 min,待SRB染液充分溶解,酶标仪检测波长515 nm处的吸光度值。
1.5 实时定量PCR检测耐药相关基因的mRNA表达取MCF-7/PR对数生长期细胞进行实验,实验分为五组:空白对照组、紫杉醇对照组(10 μg/mL紫杉醇)、紫杉醇+lncRNA RP11 siRNA组、紫杉醇+TMEM25 siRNA组、联合转染组(紫杉醇+lncRNA RP11 siRNA+TMEM25 siRNA组)。利用培养基悬浮细胞,调整细胞密度为4×105/mL,取2 mL细胞悬液接种于六孔板中,按照实验设计分组进行加药处理。TRIzol法提取总RNA,根据逆转录试剂盒说明书进行逆转录。按照SYBR荧光定量试剂盒说明书进行mRNA表达的定量检测,PCR反应体系的反应体积为20 μL:Premix 10 μL,ROX Ⅱ 0.4 μL,上游引物0.6 μL,下游引物0.6 μL,cDNA 3 μL,双蒸水(ddH2O) 6.4 μL。反应条件:95 ℃ 5 min,95 ℃变性45 s,57 ℃退火30 s,共进行40个循环,最后72 ℃延伸34 s。每组设三个平行孔,以GAPDH作为内参,引物序列见表 2。用2-ΔΔCT法进行分析, 相关基因表达的ΔΔCT=CT值(实验组目的基因-实验组GAPDH)-CT值(对照组目的基因-对照组GAPDH)。结果数据利用GraphPad Prism 5作图和分析。
引物名称 | 序列(5′→3′) | 片段长度(bp) |
RP11-770J1.3 | 上游:CAACAGGAACAGCATGGTCG 下游:TGGCTATCTGATGCTAATTTCG |
226 |
TMEM25 | 上游:CTGCCACGGGAGAACATGTGA 下游:ATCTGCCGGTCTGCTGGTT |
201 |
MDR1 | 上游:GTACCCATCATTGCAATACG 下游:CAAACTTCTGCTGAGTCGAC |
157 |
BCRP | 上游:CTGACTTTATCGCTGCTGTGT 下游:GATTGTTCGTCCCTGCTTAGAC |
176 |
MRP | 上游:ACTTCCTCTTATGTCTGCCGACA 下游:AAGACTGAACTCCTTCGTCGT |
246 |
GAPDH | 上游:GCATGGGTCAGAAGGATTCCT 下游:TCGTCCCAGTTGGTGACGAT |
106 |
实验分组同上,48 h后用胰蛋白酶消化细胞,用预冷PBS洗涤,每组加入80 μL蛋白裂解液充分混匀,冰上裂解30 min后,4 ℃离心15 min,吸取上清液,二喹啉甲酸法进行蛋白质定量分析,蛋白样品总量为25 μg;加入SDS上样缓冲液,于95 ℃煮15 min,100 V、10%十二烷基硫酸钠聚丙烯凝胶电泳1.5 h,电泳结束后将蛋白转置甲醇活化后的PVDF膜,5%的脱脂奶粉溶于TBS-T中,封闭2 h;孵育一抗,分别加入鼠抗人β-actin抗体,兔抗人TMEM25、MRP、BCRP、P-gp抗体(工作浓度1:1000),4 ℃孵育过夜。TBS-T缓冲液洗涤PVDF膜四次,每次8 min,HRP标记的羊抗兔、羊抗鼠二抗(1:5000)37 ℃孵育2 h后洗膜,进行Bio-Rad成像系统拍照,Image J软件分析实验结果,每组实验重复三次。
1.7 统计学方法采用SPSS 17.0软件进行数据分析,计量数据以均数±标准差(x±s)表示,两组间差异用t检验,多组样本均数之间差异采用方差分析,P<0.05为差异具有统计学意义。
2 结果 2.1 lncRNA RP11-770J1.3和TMEM25在MCF-7/PR中的表达如图 2所示,相对于MCF-7,lncRNA RP11-770J1.3在MCF-7/PR中的表达量升高了约5.8倍(P<0.05),TMEM25在MCF-7/PR中的表达量升高了约11.4倍(P<0.01)。
![]() |
与MCF-7比较,*P<0.05,** P<0.01. 图 2 lncRNA RP11-770J1.3和TMEM25 mRNA在MCF-7和MCF-7/PR中的表达 Fig. 2 mRNA expression of lncRNA RP11-770J1.3 and TMEM25 in MCF-7 and MCF-7/PR cells |
利用SRB实验检测干扰lncRNA RP11-770J1.3和TMEM25的表达后MCF-7/PR对紫杉醇敏感性的影响。如图 3所示,相对于MCF-7/PR空白对照组,紫杉醇对照组的细胞无明显抑制现象;与空白对照组和紫杉醇对照组比较,紫杉醇+lncRNA RP11 siRNA转染组和紫杉醇+TMEM25 siRNA转染组在不同紫杉醇浓度作用下MCF-7/PR的增殖出现了抑制现象(均P<0.05),表明干扰lncRNA RP11-770J1.3和TMEM25的表达可以提高MCF-7/PR对紫杉醇的敏感性,且以紫杉醇+RP11-770J1.3 siRNA+TMEM25 siRNA联合转染组作用明显。
![]() |
PTX+SR:紫杉醇+RP11 siRNA组;PTX+ST:紫杉醇+TMEM25 siRNA组;PTX+SR+ST:紫杉醇+RP11 siRNA+TMEM25 siRNA组. 图 3 不同浓度紫杉醇作用下lncRNA RP11-770J1.3和TMEM25对MCF-7/PR生长抑制的影响 Fig. 3 The sensitivity to paclitaxel of MCF-7/PR after transfected with lncRNA RP11 siRNA and TMEM25 siRNA |
如图 4所示,与空白对照组和紫杉醇对照组比较,RP11 siRNA转染组和TMEM25 siRNA转染组耐药相关基因MRP、BCRP和MDR1/P-gp基因表达下调(均P<0.05),且以紫杉醇+lncRNA RP11 siRNA+TMEM25 siRNA联合转染组耐药相关基因表达下调最为明显(均P<0.05)。提示干扰lncRNA RP11-770J1.3和TMEM25的表达可通过调控多种耐药相关基因的表达进而影响MCF-7/PR对紫杉醇的药物敏感性。
![]() |
A:MCF-7/PR中紫杉醇耐药相关基因的mRNA表达;B:MCF-7/PR中紫杉醇耐药相关基因的蛋白表达.SR: lncRNA RP11 siRNA; ST: TMEM25 siRNA;PTX+SR:紫杉醇+lncRNA RP11 siRNA组;PTX+ST:紫杉醇+TMEM25 siRNA组;PTX+SR+ST:紫杉醇+lncRNA RP11 siRNA+TMEM25 siRNA组.与空白对照组和紫杉醇对照组比较, *P<0.05;**P<0.01;与PTX+SR组、PTX+ST组比较, #P<0.05. 图 4 lncRNA RP11-770J1.3和TMEM25对MCF-7/PR耐药相关基因表达的影响 Fig. 4 Expression of genes related to paclitaxel resistance in MCF-7/PR after transfected with lncRNA RP11 siRNA and TMEM25 siRNA |
紫杉醇是当今肿瘤治疗的一线药物,肿瘤细胞对紫杉醇耐药性的产生是化疗失败的常见原因[9]。多药耐药的机制十分复杂,lncRNA在调控多种肿瘤细胞耐药方面的作用受到越来越多的关注。如Tsang等[10]发现lncRNA H19可以诱导MDR1的表达,并且通过调控MDR1启动子甲基化影响肝细胞癌的耐药性。多项研究结果显示,lncRNA在乳腺癌细胞的耐药中同样发挥着重要作用,如lncRNA UCA1通过下调肿瘤抑制因子P27的表达促进乳腺癌生长,沉默UCA1可以增强乳腺癌对三苯氧胺的药物敏感性[11];lncRNA HIF1A-AS2、lncRNA AK124454与乳腺癌细胞对紫杉醇耐药有关[12];Liu等[13]发现lncRNA RP11超家族通过调控miR-10a的表达影响脑胶质瘤细胞对替莫唑胺的耐药性。lncRNA RP11-770J1.3是lncRNA RP11超家族的成员,本研究通过ChiPBase v2.0软件(http://rna.sysu.edu.cn/chipbase/)发现lncRNA RP11-770J1.3与TMEM25存在相关性。TMEM25是免疫球蛋白超家族的成员,在神经母细胞瘤、胃癌和结直肠癌等组织中表达[6],与乳腺癌耐药密切相关[7]。本研究通过荧光定量检测lncRNA RP11-770J1.3和TMEM25在乳腺癌细胞株MCF-7/PR中的表达水平,初步探讨两者在MCF-7/PR中异常表达对紫杉醇敏感性的影响。
本研究结果显示,紫杉醇耐药MCF-7/PR中lnRNA RP11-770J1.3和TMEM25表达水平明显高于紫杉醇敏感的MCF-7细胞。通过干扰技术下调lncRNA RP11-770J1.3和TMEM25的表达后发现,lncRNA RP11-770J1.3和TMEM25表达水平的下降可增加MCF-7/PR对紫杉醇的敏感性,并且联合干扰两者表达的耐药细胞株对紫杉醇的敏感性更高。为进一步研究lncRNA RP11-770J1.3和TMEM25调控乳腺癌细胞对紫杉醇耐药的相关分子生物学机制,本研究对MCF-7/PR中耐药基因MRP、BCRP、MDR1/P-gp的相对表达量进行了检测。MRP、BCRP、MDR1是研究较多的ATP结合盒(ABC)转运蛋白,它们通过药物泵作用将抗癌药物转运出细胞[14]。研究发现,许多发生耐药的肿瘤组织均高表达BCRP,如乳腺癌[15]、肺癌[16]、急性髓性白血病[17]等。我们前期研究已证实,相对于MCF-7细胞,MCF-7/PR中耐药基因MRP、BCRP、MDR1/P-gp表达量增加,而调控MDR1及其编码产物P-gp的表达可能会逆转乳腺癌细胞对紫杉醇耐药[18]。本研究发现,干扰lncRNA RP11-770J1.3和TMEM25导致MRP、BCRP和MDR1/P-gp表达水平降低,说明lncRNA RP11-770J1.3和TMEM25可以通过调控耐药相关基因的表达,从而影响乳腺癌细胞对紫杉醇的药物敏感性。
综上所述,lncRNA RP11-770J1.3和TMEM25在对紫杉醇耐药的人乳腺癌细胞株中表达异常升高,下调两者可以调控耐药相关基因MRP、BCRP、MDR1/P-gp的表达,进而增强耐药细胞对紫杉醇的敏感性,提示高表达lncRNA RP11-770J1.3和TMEM25可能与乳腺癌患者紫杉醇治疗失败有关,两者有望成为逆转人乳腺癌细胞对紫杉醇耐药的研究靶点,为临床乳腺癌治疗提供新的思路。
[1] | DESANTIS C, MA J, BRYAN L, et al. Breast cancer statistics, 2013[J]. CA Cancer J Clin, 2014, 64(1): 52–62. doi:10.3322/caac.21203 |
[2] | SAKAMOTO J, MATSUI T, KODERA Y. Paclitaxel chemotherapy for the treatment of gastric cancer[J]. Gastric Cancer, 2009, 12(2): 69–78. doi:10.1007/s10120-009-0505-z |
[3] | FOJO T, MENEFEE M. Mechanisms of multidrug resistance:the potential role of microtubule-stabilizing agents[J]. Ann Oncol, 2007, 18 Suppl 5: v3–8. |
[4] | SI X, ZANG R, ZHANG E, et al. LncRNA H19 confers chemoresistance in ERα-positive breast cancer through epigenetic silencing of the pro-apoptotic gene BIK[J]. Oncotarget, 2016, 7(49): 81452–81462. |
[5] | LIU W, MA J, CHENG Y, et al. HMMR antisense RNA1, a novel long noncoding RNA, regulates the progression of basal-like breast cancer cells[J]. Breast Cancer(Dove Med Press), 2016, 8(1): 223–229. |
[6] | HRAŠOVEC S, HAUPTMAN N, GLAVAČ D, et al. TMEM25 is a candidate biomarker methylated and down-regulated in colorectal cancer[J]. Dis Markers, 2013, 34(2): 93–104. doi:10.1155/2013/427890 |
[7] | DOOLAN P, CLYNES M, KENNEDY S, et al. TMEM25, REPS2 and Meis 1:favourable prognostic and predictive biomarkers for breast cancer[J]. Tumour Biol, 2009, 30(4): 200–209. doi:10.1159/000239795 |
[8] | YANG Q L, HUANG J, WU Q, et al. Acquisition of epithelial-mesenchymal transition is associated with Skp2 expression in paclitaxel-resistant breast cancer cells[J]. Br J Cancer, 2014, 110(8): 1958–1967. doi:10.1038/bjc.2014.136 |
[9] | DINIC J, PODOLSKI-RENIC A, STANKOVIC T, et al. New approaches with natural product drugs for overcoming multidrug resistance in cancer[J]. Curr Pharm Des, 2015, 21(38): 5589–5604. doi:10.2174/1381612821666151002113546 |
[10] | TSANG W P, KWOK T T. Riboregulator H19 induction of MDR1-associated drug resistance in human hepatocellular carcinoma cells[J]. Oncogene, 2007, 26(33): 4877–4881. doi:10.1038/sj.onc.1210266 |
[11] | LIU H, WANG G, YANG L, et al. Knockdown of long non-coding RNA UCA1 increases the tamoxifen sensitivity of breast cancer cells through inhibition of Wnt/β-Catenin pathway[J]. PLoS One, 2016, 11(12): e0168406. doi:10.1371/journal.pone.0168406 |
[12] | YANG Y, JIANG Y, WAN Y, et al. UCA1 functions as a competing endogenous RNA to suppress epithelial ovarian cancer metastasis[J]. Tumour Biol, 2016, 37(8): 10633–10641. doi:10.1007/s13277-016-4917-1 |
[13] | LIU Y, XU N, LIU B, et al. Long noncoding RNA RP11-838N2.4 enhances the cytotoxic effects of temozolomide by inhibiting the functions of miR-10a in glioblastoma cell lines[J]. Oncotarget, 2016, 7(28): 43835–43851. doi:10.18632/oncotarget.v7i28 |
[14] | DE VRIES N A, ZHAO J, KROON E, et al. P-glycoprotein and breast cancer resistance protein:two dominant transporters working together in limiting the brain penetration of topotecan[J]. Clin Cancer Res, 2007, 13(21): 6440–6449. doi:10.1158/1078-0432.CCR-07-1335 |
[15] | DIAH S K, SMITHERMAN P K, ALDRIDGE J, et al. Resistance to mitoxantrone in multidrug-resistant MCF7 breast cancer cells:evaluation of mitoxantrone transport and the role of multidrug resistance protein family proteins[J]. Cancer Res, 2001, 61(14): 5461–5467. |
[16] | NAGASHIMA S, SODA H, OKA M, et al. BCRP/ABCG2 levels account for the resistance to topoisomerase I inhibitors and reversal effects by gefitinib in non-small cell lung cancer[J]. Cancer Chemother Pharmacol, 2006, 58(5): 594–600. doi:10.1007/s00280-006-0212-y |
[17] | 易娟, 陈静, 孙静, 等. 白血病K562/ADM细胞耐药性与白血病干细胞及耐药蛋白表达的关系[J]. 中华医学杂志, 2009, 89(25): 1741–1744. YI Juan, CHEN Jing, SUN Jing, et al. The relationship between multi-drug resistance and proportion of leukemia stem cells and expression of drug transporters in drug-resistant leukemia K562/ADM cells[J]. National Medical Journal of China, 2009, 89(25): 1741–1744. doi:10.3760/cma.j.issn.0376-2491.2009.25.006 (in Chinese) |
[18] | 赵遵兰, 蔡颖, 王洋洋, 等. 微小RNA-21对人乳腺癌细胞株紫杉醇耐药性的影响及其机制[J]. 浙江大学学报(医学版), 2015, 44(4): 400–405. ZHAO Zunlan, CAI Yin, WANG Yangyang, et al. Effect of miRNA-21 on paclitaxel-resistance in human breast cancer cells[J]. Journal of Zhejiang University:Medical Sciences, 2015, 44(4): 400–405. (in Chinese) |