Please wait a minute...
J Zhejiang Univ (Med Sci)  2021, Vol. 50 Issue (4): 444-453    DOI: 10.3724/zdxbyxb-2021-0256
    
Follow-up of two newborns with c.158G>A (p.Arg53His) mutation inPAH gene and assessment of the site function
WANG Jie1,2(),ZHU Bo1,ZHANG Lichun1,ZHAO Yitong3,WANG Xiaohua1,*,JIA Yueqi1,*
1. Genetic Eugenic Department of Inner Mongolia Maternity and Child Health Care Hospital, Hohhot 010020, China;
2. State Key Laboratory of Reproductive Regulation & Breeding of Grass Land Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China;
3. Medical Genetics and Prenatal Diagnosis of Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610041, China
Download: HTML( 6 )   PDF(5388KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To investigate the clinical significance of PAHc.158G>A (p.Arg53His) mutation.Methods: The blood phenylalanine (Phe) was continuously monitored in 2 unrelated newborns with suspected hyperphenylalaninimia (HPA) carrying PAH c.158G>A mutation. The cross-species conservation of the mutant amino acid was analyzed using T-Coffee. Swiss-Model software was used to construct a 3D protein structure and the impact of candidate mutations on the secondary structure of the protein product was analyzed. The population carrying rate of the p.Arg53His mutation was analyzed by literature searching. Allelic phenotype values (APV) and genotypic phenotype values (GPV) were used to predict the phenotype associated with the mutation.Results:Two mutations of PAHgene were detected in each newborn: c.611A>G(p.Tyr204Cys), c.158G>A(p.Arg53His) and c.1238G>C(p.Arg413Pro), c.158G>A(p.Arg53His). Two children tolerated normal diet and plasma Phe levels were within the normal range during follow-up. The mother of case 2 was homozygous with p.Arg53His mutation under the condition of long-term normal diet, and the blood Phe concentration and Phe/Tyr were all within the normal range. The mutant amino acids were not highly conserved among the 13 different species. The 3D structural model showed that p.Arg53His mutation reduced the hydrogen bond from 2 to 1 between the 53rd and 49th amino acids of PAH. The allele frequency of p.Arg53His was 0.015?08 in HPA patients and 0.001?621 in normal population, while the prevalence of p.Arg53His allele was highest in the East Asian normal population (0.013?73). The APV and GPV system predicted that the mutation was related to mild HPA(MHP) type.Conclusion: The different compound heterozygous mutations of p.Arg53His lead to clinical phenotype varieties. The reduction of enzyme activity caused by the mutation of p.Arg53His is not sufficient to cause symptoms of phenylketonuria, so the mutation may be “likely benign”.



Key wordsHyperphenylalaninimia      Phenylalanine hydroxylase deficiency      p.Arg53His mutation      Phenotype      Phenylalanine      Follow-up studies     
Received: 03 May 2021      Published: 01 November 2021
CLC:  R722.1  
  R596  
Corresponding Authors: WANG Xiaohua,JIA Yueqi     E-mail: wangjie8867@163.com
Cite this article:

WANG Jie,ZHU Bo,ZHANG Lichun,ZHAO Yitong,WANG Xiaohua,JIA Yueqi. Follow-up of two newborns with c.158G>A (p.Arg53His) mutation inPAH gene and assessment of the site function. J Zhejiang Univ (Med Sci), 2021, 50(4): 444-453.

URL:

http://www.zjujournals.com/med/10.3724/zdxbyxb-2021-0256     OR     http://www.zjujournals.com/med/Y2021/V50/I4/444


苯丙氨酸羟化酶基因c.158G>A(p.Arg53His)突变患儿随访及突变位点功能评估

目的:评价苯丙氨酸羟化酶(PAH)基因c.158G>A(p.Arg53His)突变的临床意义。方法:持续监测2例携带PAH基因p.Arg53His突变的疑似高苯丙氨酸血症患儿血液中苯丙氨酸(Phe)浓度,分析患儿的临床生化特征,应用T-Coffee系统分析PAH蛋白的跨种属保守性,应用Swiss-Model对正常结构及变异结构的PAH进行蛋白质三维结构建模及比对分析突变所致蛋白质空间结构的改变。检索现有数据库及文献统计p.Arg53His突变的人群携带率,应用等位基因表型值(APV)与基因型表型值(GPV)预测系统对该突变相关表型进行预测。结果:2例新生儿在PAH基因上分别检出两个突变:c.611A>G(p.Tyr204Cys)、c.158G>A(p.Arg53His)和c.1238G>C(p.Arg413Pro)、c.158G>A(p.Arg53His)。2例新生儿能耐受正常饮食,在随访期间血Phe水平在正常范围内。例2的母亲为p.Arg53His纯合突变,长期未进行低蛋白质、低Phe饮食干预,血Phe浓度、Phe/酪氨酸比值均在正常范围。突变的氨基酸在13个不同物种间并非高度保守。三维结构建模结果显示,p.Arg53His突变使得PAH第53位和第49位氨基酸之间的氢键由2个减少为1个,降低了二聚体的稳定性。p.Arg53His在高苯丙氨酸血症患者中的等位基因频率为0.015?08,在健康人群中的等位基因频率为0.001?621,其中东亚人群中的携带率最高,为0.013?73。APV与GPV系统预测结果显示,该突变与轻度高苯丙氨酸血症型别相关。结论PAH基因p.Arg53His突变与不同突变组合为复合杂合状态可引起临床表型差异。p.Arg53His突变引起体内酶活性的降低不足以出现苯丙酮尿症临床症状,分类为“可能良性”。


关键词: 高苯丙氨酸血症,  苯丙氨酸羟化酶缺乏症,  p.Arg53His突变,  表型,  苯丙氨酸,  随访研究 

序号

性别

随访时间(月)

互补DNA 改变

氨基酸改变

初筛时Phe浓度(μmol/L)

Phe/Tyr比值

随访期间平均Phe浓度(xˉ±s,μmol/L)

临床表现

干预措施

例1

10

c.[158G>A];[ 611A>G]

p.[R53H];[Y204C]

94.8

1.47

88±19

例2

12

c.[158G>A];[1238 G>C]

p.[R53H];[R413P]

122.4

1.70

110±20

例2母亲

c.[158G>A];[ 158G>A]

p.[R53H];[R53H]

69.6

1.56

Table 1 Characteristics of p.Arg53His (p.R53H) mutation carriers and their plasma phenylalanine levels during follow up
Figure 1 Cross-species conservation of the p.Arg53His mutation
Figure 2 3D structure prediction of PAH wild-type and p.Arg53His mutation

人种/群

受试者数

等位基因数

p.R53H等位基因数

等位基因频率

韩国[22]

79

158

2

0.0127

日本[6]

203

406

9

0.0222

中国[7]

165

330

8

0.0242

中国[22]

796

1592

40

0.0251

中国北方[23]

185

370

9

0.0243

中国北方[22]

557

1114

33

0.0296

中国南方[22]

239

478

7

0.0146

中国汉族[8]

338

676

3

0.0044

中国北方汉族[24]

285

570

10

0.0175

中国南方汉族[24]

112

224

0

0.0000

中国台湾[25]

71

142

3

0.0211

斯洛伐克[9]

207

414

1

0.0024

以色列(犹太人和阿拉伯人)[10]

180

360

2

0.0056

意大利[11]

107

214

1

0.0047

法国[26]

364

728

1

0.0014

德国[27]

226

452

1

0.0022

中国维吾尔族[12]

111

222

12

0.0541

伊朗[28]

81

162

1

0.0062

中国上海[18]

1020

2040

11

0.000?05

中国青岛[29]

44

88

8

0.0009

合计

5370

10?740

162

0.015?08

Table 2 Allele frequency of the p.Arg53His (p.R53H) mutation in patients with hyperphenylalaninimia

人种/群

受试者数

等位基因数

p.R53H等位基因数

等位基因频率

东亚*

9976

19?952

274

0.013?73

南亚*

15?306

30?612

45

0.001?470

拉丁美洲*

17?719

35?438

33

0.000?931?2

欧洲(除芬兰人)*

64?561

129?122

86

0.000?666?0

非洲*

12?483

24?966

5

0.000?200?3

欧洲(芬兰人)*

12?551

25?102

3

0.000?119?5

犹太人群*

5184

10?368

1

0.000?096?45

浙江省金华市[30]

742

1484

6

0.004

合计

142?134

284?268

461

0.001?621

Table 3 Allele frequency of the p.Arg53His (p.R53H) mutation in the general population

编号

生化分型

互补DNA改变

氨基酸改变

参考文献

1

cPKU

c. [331C>T];[158G>A;842+2T>A]

p.[R111*];[R53H;a]

[7]

2

cPKU

c.[728G>A];[158 G>A;842+2 T>A]

p.[R243Q];[R53H;a]

[7]

3

mPKU

c.[650 G>A];[158 G>A;842+2 T>A]

p.[C217Y];[ R53H;a]

[7]

4

mPKU

c.[1197 G>A];[158 G>A;842+2 T>A]

p.[V399V];[ R53H;a]

[7]

5

cPKU

c.[1197 G>A];[158 G>A;842+2 T>A]

p.[V399V];[ R53H;a]

[7]

6

mPKU

c. [158 G>A;842+2 T>A]; [158 G>A;842+2 T>A]

p. [ R53H;a]; [ R53H;a]

[7]

7

MHP

c. [158 G>A]; [208_210delTCT]

p.[ R53H];[S70del]

[6]

8

MHP

c. [158 G>A]; [498C>G]

p.[R53H];[T166*]

[5]

9

MHP

c. [158 G>A]; [721C>T]

p.[R53H];[R241C]

[5]

10

MHP

c. [158 G>A]; [728G>A]

p.[R53H];[R243Q]

[6]

11

MHP

c. [158 G>A]; [728G>A]

p.[R53H];[R243Q]

[7]

12

mPKU

c. [158 G>A]; [728G>A]

p.[R53H];[R243Q]

[13]

13

MHP

c. [158 G>A]; [755G>A]

p.[R53H];[R252Q]

[6]

14

MHP

c. [158 G>A]; [975C>G]

p.[R53H];[Y325*]

[5]

15

MHP

c. [158 G>A]; [1068C>A]

p.[R53H];[Y356*]

[5]

16

MHP

c. [158 G>A]; [1162G>A]

p.[R53H];[V388M]

[13]

17

MHP

c. [158 G>A]; [1238G>C]

p.[R53H];[R413P]

[5]

18

mPKU

c. [158 G>A;311 C>A]; [311 C>A]

p. [R53H; A104D];[ A104D]

[12]

19

mPKU

c. [158 G>A]; [158 G>A]

p.[R53H]; [R53H]

[12]

20

mPKU

c. [158 G>A; 1289T>C]; [1289T>C]

p.[R53H; L430P]; [L430P]

[12]

21

MHP

c. [158 G>A; 1262 T>C]; [158 G>A; 1262 T>C]

p.[R53H; I421T]; [R53H; I421T]

[12]

22

mPKU

c. [158 G>A]; [590 T>A]

p.[R53H]; [L197*]

[12]

23

MHP

c. [158 G>A]; [898G>T]

p.[R53H]; [A300S]

[12]

24

MHP

c. [158 G>A]; [728G>A]

p.[R53H]; [R243Q]

[12]

25

MHP

c. [158 G>A]; [749C>T]

p.[R53H]; [S250F]

[14]

Table 4 Biochemical phenotypes of patients with phenylalanine hydroxylase deficiency carrying the p.Arg53His (p.R53H) mutation (compand heterozygote)

编号

生化分型

互补DNA改变

氨基酸改变

参考文献

26

MHP

c. [158 G>A(;)331C>T]

p.[ R53H(;)R111*]

[15]

27

MHP

c. [158 G>A(;)331C>T]

p.[ R53H(;)R111*]

[15]

28

MHP

c. [158 G>A(;)521T>A]

p.[ R53H(;)I174N]

[15]

29

mPKU

c. [158 G>A(;)728G>A]

p.[ R53H(;)R243Q]

[8]

30

MHP

c. [158 G>A(;)782G>A]

p.[ R53H(;)R261Q]

[11]

31

MHP

c. [158 G>A(;)842C>T]

p.[ R53H(;)P281L]

[15]

32

MHP

c. [158 G>A(;)975C>G]

p.[ R53H(;)Y325*]

[5]

33

cPKU

c. [158 G>A(;)1162G>C]

p.[ R53H(;)V388L]

[4]

34

MHP

c. [158 G>A(;)1222C>T]

p.[ R53H(;)R408W]

[9]

35

cPKU

c. [158 G>A(;)1222C>T]

p.[ R53H(;)R408W]

[8]

36

mPKU

c. [158 G>A(;)842+2T>A]

p.[ R53H(;)a]

[8]

37

mPKU

c. [158 G>A];[?]

p.[ R53H(;)a]

[26]

38

MHP

c. [158 G>A];[?]

p.[ R53H(;)a]

[10]

39

MHP

c. [158 G>A];[?]

p.[ R53H(;)a]

[10]

40

MHP

c. [158 G>A(;)1066-14C>G]

p.[ R53H(;)a]

[5]

41

mPKU

c.[158 G>A(;)1238G>C (;)842+2T>A(;)IVS7+2T>A]

p.[R53H(;)R413P(;)a]

[12]

42

cPKU

c.[158 G>A(;)308G>A (;)1066-11G>A(;)IVS10-11G>A]

p.[R53H(;)G103D(;)a]

[12]

43

MHP

c.[158 G>A(;)688G>A (;)842+2T>A(;)IVS7+2T>A]

p.[R53H(;)V230I(;)a]

[12]

Table 5 Biochemical phenotypes of patients with phenylalanine hydroxylase deficiency carrying the p.Arg53His (p.R53H) mutation (Zygosity of other mutation phase unknown)
[1]   BERCOVICHD, ELIMELECHA, YARDENIT, et al.A mutation analysis of the phenylalanine hydroxylase (PAH) gene in the Israeli population[J]Ann Hum Genet, 2008, 72( 3): 305-309.
doi: 10.1111/j.1469-1809.2007.00425.x
[2]   中华医学会医学遗传学分会遗传病临床实践指南撰写组, 黄尚志, 宋昉. 苯丙酮尿症的临床实践指南[J]. 中华医学遗传学杂志, 2020, 37(3): 226-234
Writing Group for Practice Guidelines for Diagnosis and Treatment of Genetic Diseases, Medical Genetics Branch of Chinese Medical Association, HUANG Shangzhi, SONG Fang. Clinical practice guidelines for phenylketonuria[J]. Chinese Journal of Medical Genetics, 2020, 37(3): 226-234. (in Chinese)
[3]   REGIER D S, GREENE C L. Phenylalanine hydroxylase deficiency[J/OL]. (2017-01-05)[2021-04-12]. https://www.ncbi.nlm.nih.gov/books/NBK1504/
[4]   PARKY S, SEOUNGC S, LEES W, et al.Identification of three novel mutations in Korean phenylketonuria patients: R53H, N207D, and Y325X[J]Hum Mutat, 1998, 11( S1): S121-S122.
doi: 10.1002/humu.1380110140
[5]   CHOIR, LEEJ, PARKH D, et al.Reassessing the significance of the PAH C.158g>a (P.Arg53His) variant in patients with hyperphenylalaninemia[J]J Pediatr Endocrinol Metab, 2017, 30( 11): 1211-1218.
doi: 10.1515/jpem-2017-0158
[6]   OKANOY, KUDOS, NISHIY, et al.Molecular characterization of phenylketonuria and tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency in Japan[J]J Hum Genet, 2011, 56( 4): 306-312.
doi: 10.1038/jhg.2011.10
[7]   TAOJ, LIN, JIAH, et al.Correlation between genotype and the tetrahydrobiopterin-responsive phenotype in Chinese patients with phenylketonuria[J]Pediatr Res, 2015, 78( 6): 691-699..
doi: 10.1038/pr.2015.167
[8]   ZHUT, YEJ, HANL, et al.Variations in genotype-phenotype correlations in phenylalanine hydroxylase deficiency in Chinese Han population[J]Gene, 2013, 529( 1): 80-87..
doi: 10.1016/j.gene.2013.07.079
[9]   POLAKE, FICEKA, RADVANSZKYJ, et al.Phenylalanine hydroxylase deficiency in the Slovak population: genotype-phenotype correlations and genotype-based predictions of BH4-responsiveness[J]Gene, 2013, 526( 2): 347-355.
doi: 10.1016/j.gene.2013.05.057
[10]   BERCOVICHD, ELIMELECHA, ZLOTOGORAJ, et al.Genotype-phenotype correlations analysis of mutations in the phenylalanine hydroxylase (PAH) gene[J]J Hum Genet, 2008, 53( 5): 407-418.
doi: 10.1007/s10038-008-0264-4
[11]   FIORIL, FIEGEB, RIVAE, et al.Incidence of Bh4-responsiveness in phenylalanine-hydroxylase-deficient Italian patients[J]Mol Genet Metab, 2005, 67-74.
doi: 10.1016/j.ymgme.2005.06.017
[12]   SUY, WANGH, REJIAFUN, et al.The molecular epidemiology of hyperphenylalaninemia in uygur population: incidence from newborn screening and mutationalspectra[J]Ann Transl Med, 2019, 7( 12): 258.
doi: 10.21037/atm.2019.05.16
[13]   LEED H, KOOS K, LEEK S, et al.The molecular basis of phenylketonuria in Koreans[J]J Hum Genet, 2004, 49( 11): 617-621.
doi: 10.1007/s10038-004-0197-5
[14]   WETTSTEINS, UNDERHAUGJ, PEREZB, et al.Linking genotypes database with locus-specific database and genotype-phenotype correlation in phenylketonuria[J]Eur J Hum Genet, 2015, 23( 3): 302-309.
doi: 10.1038/ejhg.2014.114
[15]   DATEKIS, WATANABES, NAKATOMIA, et al.Genetic background of hyperphenylalaninemia in Nagasaki, Japan[J]Pediatr Int, 2016, 58( 5): 431-433.
doi: 10.1111/ped.12924
[16]   中华人民共和国卫生部. 新生儿疾病筛查技术规范(2010年版) [A/OL]. (2010-11-10)[2020-06-11]. http://www.nhc.gov.cn/cmsresources/mohfybjysqwss/cmsrsdocument/doc10798.doc
Ministry of Health of the People’s Republic of China. Technical guide of newborn screening in China(2010)[A/OL]. (2010-11-10)[2020-06-11]. http://www.nhc.gov.cn/cmsresources/mohfybjysqwss/cmsrsdocument/doc10798.doc. (in Chinese)
[17]   RICHARDSS, AZIZN, BALES, et al.Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the american college of medical genetics and genomics and the association for molecular pathology[J]Genet Med, 2015, 17( 5): 405-423.
doi: 10.1038/gim.2015.30
[18]   WANGR, SHENN, YEJ, et al.Mutation spectrum of hyperphenylalaninemia candidate genes and the genotype-phenotype correlation in the Chinese population[J]Clin Chim Acta, 2018, 132-138.
doi: 10.1016/j.cca.2018.02.035
[19]   KIMS W, JUNGJ, OHH J, et al.Structural and functional analyses of mutations of the human phenylalanine hydroxylase gene[J]Clin Chim Acta, 2006, 365( 1-2): 279-287.
doi: 10.1016/j.cca.2005.09.019
[20]   PEYA L, STRICHERF, SERRANOL, et al.Predicted effects of missense mutations on native-state stability account for phenotypic outcome in phenylketonuria, a paradigm of misfolding diseases[J]Am J Hum Genet, 2007, 81( 5): 1006-1024.
doi: 10.1086/521879
[21]   GULDBERGP, REYF, ZSCHOCKEJ, et al.A european multicenter study of phenylalanine hydroxylase deficiency: classification of 105 mutations and a general system for genotype-based prediction of metabolic phenotype[J]Am J Hum Genet, 1998, 63( 1): 71-79.
doi: 10.1086/301920
[22]   LIN, JIAH, LIUZ, et al.Molecular characterisation of phenylketonuria in a Chinese mainland population using next-generation sequencing[J]Sci Rep, 2015, 5( 1): 15769.
doi: 10.1038/srep15769
[23]   SONGF, QUY J, ZHANGT, et al.Phenylketonuria mutations in northern China[J]Mol Genet Metab, 2005, 107-118.
doi: 10.1016/j.ymgme.2005.09.001
[24]   ZHUT, QINS, YEJ, et al.Mutational spectrum of phenylketonuria in the Chinese Han population: a novel insight into the geographic distribution of the common mutations[J]Pediatr Res, 2010, 67( 3): 280-285.
doi: 10.1203/PDR.0b013e3181c9fb85
[25]   LIANGY, HUANGM Z, CHENGC Y, et al.The mutation spectrum of the phenylalanine hydroxylase (PAH) gene and associated haplotypes reveal ethnic heterogeneity in the Taiwanese population[J]J Hum Genet, 2014, 59( 3): 145-152.
doi: 10.1038/jhg.2013.136
[26]   JEANNESSON-THIVISOLE, FEILLETF, CHéRYC, et al.Genotype-phenotype associations in French patients with phenylketonuria and importance of genotype for full assessment of tetrahydrobiopterin responsiveness[J]Orphanet J Rare Dis, 2015, 10( 1): 158.
doi: 10.1186/s13023-015-0375-x
[27]   AULEHLA-SCHOLZC, HEILBRONNERH. Mutational spectrum in german patients with phenylalanine hydroxylase deficiency[J]Hum Mutat, 2003, 21( 4): 399-400.
doi: 10.1002/humu.9116
[28]   RAZIPOURM, ALAVINEJADE, SAJEDIS Z, et al.Genetic study of the PAH locus in the Iranian population: familial gene mutations and minihaplotypes[J]Metab Brain Dis, 2017, 32( 5): 1685-1691.
doi: 10.1007/s11011-017-0048-7
[29]   杜玮, 杨桂芸, 陆薇冰, 等. 青岛市苯丙氨酸羟化酶缺乏症患儿基因突变分析[J]. 发育医学电子杂志, 2020, 8(1):30-34
DU Wei, YANG Guiyun, LU Weibing, et al. Study on mutations of gene in children with phenylalanine hydroxylase deficiency in Qingdao[J]. Journal of Developmental Medicine, 2020, 8(1): 30-34. (in Chinese)
[30]   金克勤, 胡苑. 742例育龄妇女PAH基因突变筛查结果分析[J]. 中国优生与遗传杂志, 2020, 28(7): 15-17
JIN Keqin, HU Yuan. Analysis of screening results of mutation of PAH gene in 742 fertile woman[J]. Chinese Journal of Birth Health & Heredity, 2020, 28(7): 15-17. (in Chinese)
[1] HU Zhenzhen,YANG Jianbin,HU Lingwei,ZHAO Yunfei,ZHANG Chao,YANG Rulai,HUANG Xinwen. Screening and clinical analysis of isovaleric acidemia newborn in Zhejiang province[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 556-564.
[2] XU Chuncai,BAO Yingying,ZHU Jiajun,TENG Yanping,HE Yuanyuan,CHENG Ke,JI Fengjuan,WU Mingyuan. Remote monitoring of neonatal jaundice in newborns with ABO hemolytic disease[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 651-655.
[3] LI Zhanlu,HUANG He,ZHANG Wenbin,WANG Min,FU Guosheng. Prognosis of patients with vulnerable plaques indicated by coronary CT angiography[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 76-81.
[4] ZHANG Junhao,JIN Jinghua,YANG Wei. Autophagy regulates the function of vascular smooth muscle cells in the formation and rupture of intracranial aneurysms[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 552-559.
[5] YE Qing,ZHANG Yingying,WANG Jingjing,MAO Jianhua. Analysis of Alport syndrome induced by type IV collagen alpha 5 gene mutation in two families[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 384-389.
[6] TONG Fan,YANG Rulai,LIU Chang,WU Dingwen,ZHANG Ting,HUANG Xinwen,HONG Fang,QIAN Guling,HUANG Xiaolei,ZHOU Xuelian,SHU Qiang,ZHAO Zhengyan. Screening for hereditary tyrosinemia and genotype analysis in newborns[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 459-464.
[7] XIAO Li,TONG Xiaoyong. Advances in molecular mechanism of vascular remodeling in pulmonary arterial hypertension[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 102-110.
[8] CHEN Ting,ZHAO Zhengyan,JIANG Pingping,SHU Qiang. Research progress on phenotype and genotype of hyperphenylalaninemia[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 219-226.
[9] HUANG Bingxue,SANG Guoyao,TUO Xiaoqing,TIAN Tian,AbidanAiniwaer ,DAI Jianghong. Trajectory modeling for estimating the trend of human papillomavirus infection status among men who have sex with men[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 150-155.
[10] LU Wei,LIN Mengna,ZHAO Shifang,WANG Huiming,HE Fuming. Application of modified lateral window for maxillary sinus floor augmentation[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 630-636.
[11] DING Yuan,SUN Zhongquan,ZHANG Wenyan,ZHANG Xiangying,JIANG Yuancong,YAN Sheng,WANG Weilin. Application of enhanced recovery program in laparoscopic distal pancreatectomy[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 625-629.
[12] HUANG Xinwen, ZHANG Yu, HONG Fang, ZHENG Jing, YANG Jianbin, TONG Fan, MAO Huaqing, HUANG Xiaolei, ZHOU Xuelian, YANG Rulai, ZHAO Zhengyan. Screening for amino acid metabolic disorders of newborns in Zhejiang province:prevalence, outcome and follow-up[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 233-239.
[13] HONG Fang, HUANG Xinwen, ZHANG Yu, YANG Jianbin, TONG Fan, MAO Huaqing, HUANG Xiaolei, ZHOU Xuelian, YANG Rulai, ZHAO Zhengyan. Screening for newborn organic aciduria in Zhejiang province:prevalence, outcome and follow-up[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 240-247.
[14] ZHENG Jing, ZHANG Yu, HONG Fang, YANG Jianbin, TONG Fan, MAO Huaqing, HUANG Xiaolei, ZHOU Xuelian, YANG Rulai, ZHAO Zhengyan, HUANG Xinwen. Screening for fatty acid oxidation disorders of newborns in Zhejiang province:prevalence, outcome and follow-up[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 248-255.
[15] GAO Qiuming, XUE Yun, DENG Yinshuan, ZHOU Shungang, LI Meng, SHI Peisheng. One-stage bone grafting combined with non-contact plate technique for treatment of post-traumatic femoral osteomyelitis and bone defects[J]. J Zhejiang Univ (Med Sci), 2016, 45(6): 631-635.