Please wait a minute...
J Zhejiang Univ (Med Sci)  2021, Vol. 50 Issue (3): 396-402    DOI: 10.3724/zdxbyxb-2021-0146
    
Research progress on proteasome subunits in regulating occurrence and development of hepatocellular carcinoma
HU Jingyi(),WANG Qingqing,LIU Yang()
Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
Download: HTML( 16 )   PDF(2627KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Proteasome is the eukaryotic organelle responsible for degradation of short-lived proteins and involved in maintaining cellular protein homeostasis. It has been reported that during the occurrence and development of hepatocellular carcinoma (HCC), the regulatory particle subunits of proteasome regulate a series of tumor-related proteins, and proliferation, survival-associated signaling molecules, including PTEN gene, P53, Bcl-2, Bcl-2 interacting mediator of cell death (Bim), cyclin-dependent kinase 4(CDK4), transforming growth factor β receptor (TGFBR), E2F1, growth factor receptor-bound protein 2 (GRB2) . Meanwhile, these subunits regulate some tumor-associated pathway protein, such as signal transducer and activator of transcription 3 (STAT3) and protein kinase B (AKT), inducing their malfunction to promote the occurrence, proliferation, invasion and metastasis of HCC. The core particle subunits are more to perform the degradation of HCC-related proteins, so inhibitors targeting the core particle show a good anti-tumor effect. This review summarizes the current research progress on the regulation and mechanism of proteasome subunits in promoting the occurrence and development of HCC.



Key wordsProteasome      Proteasome regulatory particle      Proteasome core particle      Hepatocellular carcinoma      Mechanism      Review     
Received: 11 January 2021      Published: 16 August 2021
CLC:  R735.7  
Corresponding Authors: LIU Yang     E-mail: hjy558@zju.edu.cn;liuyang0620@zju.edu.cn
Cite this article:

HU Jingyi,WANG Qingqing,LIU Yang. Research progress on proteasome subunits in regulating occurrence and development of hepatocellular carcinoma. J Zhejiang Univ (Med Sci), 2021, 50(3): 396-402.

URL:

http://www.zjujournals.com/med/10.3724/zdxbyxb-2021-0146     OR     http://www.zjujournals.com/med/Y2021/V50/I3/396


蛋白酶体亚基对肝细胞癌发生发展的调控作用研究进展

蛋白酶体是真核细胞中负责降解细胞内短寿命蛋白、参与维持细胞内蛋白质稳态的重要细胞器。研究表明,在肝细胞癌(HCC)的发生发展进程中,蛋白酶体调节颗粒亚基可通过调节PTEN基因、P53、Bcl-2、Bcl-2相互作用的细胞死亡介体蛋白、周期蛋白依赖性激酶4、β型转化生长因子受体、E2F1、生长因子受体结合蛋白2等多种肿瘤相关蛋白以及相关的通路分子,例如信号转导及转录激活蛋白3、蛋白激酶B,诱使这些蛋白质功能失调,进而促进HCC的发生,癌细胞增殖、侵袭与转移。蛋白酶体核心颗粒亚基则更多参与HCC相关蛋白的降解,因此核心颗粒的抑制剂表现出良好的抗肿瘤效应。本文就当前蛋白酶体调节颗粒亚基和核心颗粒亚基在HCC发生发展过程中的调控作用及其机制进行综述。


关键词: 蛋白酶体,  蛋白酶体调节颗粒,  蛋白酶体核心颗粒,  肝细胞癌,  机制,  综述 
Figure 1 Mechanisms of proteasome regulatory particles subunits in HCC
[1]   BARDJ A M, GOODALLE A, GREENEE R, et al.Structure and function of the 26S proteasome[J]Annu Rev Biochem, 2018, 87( 1): 697-724.
doi: 10.1146/annurev-biochem-062917-011931
[2]   COUXO, TANAKAK, GOLDBERGA L. Structure and functions of the 20S and 26S proteasomes[J]Annu Rev Biochem, 1996, 65( 1): 801-847.
doi: 10.1146/annurev.bi.65.070196.004101
[3]   BRAYF, FERLAYJ, SOERJOMATARAMI, et al.Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]CA Cancer J Clin, 2018, 68( 6): 394-424.
doi: 10.3322/caac.21492
[4]   WILLIAMSB R, PRABHUV R, HUNTERK E, et al.Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells[J]Science, 2008, 322( 5902): 703-709.
doi: 10.1126/science.1160058
[5]   DESHAIESR J. Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy[J]BMC Biol, 2014, 12( 1): 94.
doi: 10.1186/s12915-014-0094-0
[6]   A three-drug combo for multiple myeloma[J]. Cancer Discov, 2016, 6(11): Of4
[7]   MOREAUP, MASSZIT, GRZASKON, et al.Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma[J]N Engl J Med, 2016, 374( 17): 1621-1634.
doi: 10.1056/NEJMoa1516282
[8]   LUDWIGH, POENISCHW, KNOPS, et al.Ixazomib–Thalidomide–Dexamethasone for induction therapy followed by Ixazomib maintenance treatment in patients with relapsed/refractory multiple myeloma[J]Br J Cancer, 2019, 121( 9): 751-757.
doi: 10.1038/s41416-019-0581-8
[9]   HOUJ, JINJ, XUY, et al.Randomized, double-blind, placebo-controlled phase Ⅲ study of ixazomib plus lenalidomide-dexamethasone in patients with relapsed/refractory multiple myeloma: China continuation study[J]J Hematol Oncol, 2017, 10( 1): 137.
doi: 10.1186/s13045-017-0501-4
[10]   THROWERJ S, HOFFMANL, RECHSTEINERM, et al.Recognition of the polyubiquitin proteolytic signal[J]EMBO J, 2000, 19( 1): 94-102.
doi: 10.1093/emboj/19.1.94
[11]   VERMAR, ARAVINDL, OANIAR, et al.Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome[J]Science, 2002, 298( 5593): 611-615.
doi: 10.1126/science.1075898
[12]   WANGB, XUX, YANGZ, et al.POH1 contributes to hyperactivation of TGF-β signaling and facilitates hepatocellular carcinoma metastasis through deubiquitinating TGF-β receptors and caveolin-1[J]EBioMedicine, 2019, 320-332.
doi: 10.1016/j.ebiom.2019.01.058
[13]   CHENY G. Endocytic regulation of TGF-β signaling[J]Cell Res, 2009, 19( 1): 58-70.
doi: 10.1038/cr.2008.315
[14]   WANGB, MAA, ZHANGL, et al.POH1 deubiquitylates and stabilizes E2F1 to promote tumour formation[J]Nat Commun, 2015, 6( 1): 8704.
doi: 10.1038/ncomms9704
[15]   LVJ, ZHANGS, WUH, et al.Deubiquitinase PSMD14 enhances hepatocellular carcinoma growth and metastasis by stabilizing GRB2[J]Cancer Lett, 2020, 22-34.
doi: 10.1016/j.canlet.2019.10.025
[16]   WANGC H, LUS X, LIUL L, et al.POH1 knockdown induces cancer cell apoptosis via p53 and bim[J]Neoplasia, 2018, 20( 5): 411-424.
doi: 10.1016/j.neo.2018.02.005
[17]   OLIVARESA O, BAKERT A, SAUERR T. Mechanical protein unfolding and degradation[J]Annu Rev Physiol, 2018, 80( 1): 413-429.
doi: 10.1146/annurev-physiol-021317-121303
[18]   MARTINEZ-FONTSK, DAVISC, TOMITAT, et al.The proteasome 19S cap and its ubiquitin receptors provide a versatile recognition platform for substrates[J]Nat Commun, 2020, 11( 1): 477.
doi: 10.1038/s41467-019-13906-8
[19]   BUDENHOLZERL, CHENGC L, LIY, et al.Proteasome structure and assembly[J]J Mol Biol, 2017, 429( 22): 3500-3524.
doi: 10.1016/j.jmb.2017.05.027
[20]   XIONGW, WANGW, HUANGH, et al.Prognostic significance of PSMD1 expression in patients with gastric cancer[J]J Cancer, 2019, 10( 18): 4357-4367.
doi: 10.7150/jca.31543
[21]   OKUMURAT, IKEDAK, UJIHIRAT, et al.Proteasome 26S subunit PSMD1 regulates breast cancer cell growth through p53 protein degradation[J]J Biochem, 2018, 163( 1): 19-29.
doi: 10.1093/jb/mvx053
[22]   LIY, HUANGJ, ZENGB, et al.PSMD2 regulates breast cancer cell proliferation and cell cycle progression by modulating p21 and p27 proteasomal degradation[J]Cancer Lett, 2018, 109-122.
doi: 10.1016/j.canlet.2018.05.018
[23]   TANY, JINY, WUX, et al.PSMD1 and PSMD2 regulate HepG2 cell proliferation and apoptosis via modulating cellular lipid droplet metabolism[J]BMC Mol Biol, 2019, 20( 1): 24.
doi: 10.1186/s12867-019-0141-z
[24]   COLLINSG A, GOLDBERGA L. The logic of the 26s proteasome[J]Cell, 2017, 169( 5): 792-806.
doi: 10.1016/j.cell.2017.04.023
[25]   JIANGZ, ZHOUQ, GEC, et al.Rpn10 promotes tumor progression by regulating hypoxia-inducible factor 1 alpha through the PTEN/Akt signaling pathway in hepatocellular carcinoma[J]Cancer Lett, 2019, 1-11.
doi: 10.1016/j.canlet.2019.01.020
[26]   CAIM J, CUIY, FANGM, et al.Inhibition of PSMD4 blocks the tumorigenesis of hepatocellular carcinoma[J]Gene, 2019, 66-74.
doi: 10.1016/j.gene.2019.03.063
[27]   YANG X, MIAO X, WEN Y, et al. A possible connection between adhesion regulating molecule 1 overexpression and nuclear factor kappa B activity in hepatocarcinogenesis[J]. Oncol Rep, 2012, 28(1): 283-290
[28]   SOONGR S, ANCHOORIR K, RODENR B S, et al.Bis-benzylidine piperidone RA190 treatment of hepatocellular carcinoma via binding RPN13 and inhibiting NF-κB signaling[J]BMC Cancer, 2020, 20( 1): 386.
doi: 10.1186/s12885-020-06896-0
[29]   RABLJ, SMITHD M, YUY, et al.Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases[J]Mol Cell, 2008, 30( 3): 360-368.
doi: 10.1016/j.molcel.2008.03.004
[30]   QINJ, WANGW, ANF, et al.PSMC2 is up-regulated in pancreatic cancer and promotes cancer cell proliferation and inhibits apoptosis[J]J Cancer, 2019, 10( 20): 4939-4946.
doi: 10.7150/jca.27616
[31]   LIUY, CHENH, LIX, et al.PSMC2 regulates cell cycle progression through the p21/cyclin d1 pathway and predicts a poor prognosis in human hepatocellular carcinoma[J]Front Oncol, 2021, 607021.
doi: 10.3389/fonc.2021.607021
[32]   SHIC X, KORTüMK M, ZHUY X, et al.CRISPR genome-wide screening identifies dependence on the proteasome subunit psmc6 for bortezomib sensitivity in multiple myeloma[J]Mol Cancer Ther, 2017, 16( 12): 2862-2870.
doi: 10.1158/1535-7163.MCT-17-0130
[33]   YUT, TAOY, YANGM, et al.Profiling human protein degradome delineates cellular responses to proteasomal inhibition and reveals a feedback mechanism in regulating proteasome homeostasis[J]Cell Res, 2014, 24( 10): 1214-1230.
doi: 10.1038/cr.2014.122
[34]   ZHANGZ, TORIIN, FURUSAKAA, et al.Structural and functional characterization of interaction between hepatitis B virus X protein and the proteasome complex[J]J Biol Chem, 2000, 275( 20): 15157-15165.
doi: 10.1074/jbc.M910378199
[35]   CUIF, WANGY, WANGJ, et al.The up-regulation of proteasome subunits and lysosomal proteases in hepatocellular carcinomas of theHBx gene knockin transgenic mice[J]Proteomics, 2006, 6( 2): 498-504.
doi: 10.1002/pmic.200500218
[36]   FUJITA J, SAKURAI T. The oncoprotein gankyrin/PSMD10 as a target of cancer therapy[J]. Adv Exp Med Biol, 2019, 1164: 63-71
[37]   DAWSONS, APCHERS, MEEM, et al.Gankyrin is an ankyrin-repeat oncoprotein that interacts with CDK4 kinase and the S6 ATPase of the 26 S proteasome[J]J Biol Chem, 2002, 277( 13): 10893-10902.
doi: 10.1074/jbc.M107313200
[38]   JIANGY, IAKOVAP, JINJ, et al.Farnesoid X receptor inhibits gankyrin in mouse livers and prevents development of liver cancer[J]Hepatology, 2013, 57( 3): 1098-1106.
doi: 10.1002/hep.26146
[39]   SAKURAIT, YADAN, HAGIWARAS, et al.Gankyrin induces STAT 3 activation in tumor microenvironment and sorafenib resistance in hepatocellular carcinoma[J]Cancer Sci, 2017, 108( 10): 1996-2003.
doi: 10.1111/cas.13341
[40]   FUJ, CHENY, CAOJ, et al.p28GANK overexpression accelerates hepatocellular carcinoma invasiveness and metastasis via phosphoinositol 3-kinase/AKT/hypoxia-inducible factor-1α pathways[J]Hepatology, 2011, 53( 1): 181-192.
doi: 10.1002/hep.24015
[41]   LUOT, FUJ, XUA, et al.PSMD10/gankyrin induces autophagy to promote tumor progression through cytoplasmic interaction with ATG7 and nuclear transactivation of ATG7 expression[J]Autophagy, 2016, 12( 8): 1355-1371.
doi: 10.1080/15548627.2015.1034405
[42]   YANGC, TANY X, YANGG Z, et al.Gankyrin has an antioxidative role through the feedback regulation of Nrf2 in hepatocellular carcinoma[J]J Exp Med, 2016, 213( 5): 859-875.
doi: 10.1084/jem.20151208
[43]   LIUR, LIY, TIANL, et al.Gankyrin drives metabolic reprogramming to promote tumorigenesis, metastasis and drug resistance through activating β-catenin/c-Myc signaling in human hepatocellular carcinoma[J]Cancer Lett, 2019, 34-46.
doi: 10.1016/j.canlet.2018.11.030
[44]   VANDER HEIDENM G, DEBERARDINISR J. Understanding the intersections between metabolism and cancer biology[J]Cell, 2017, 168( 4): 657-669.
doi: 10.1016/j.cell.2016.12.039
[45]   HOWELLL A, PETERSONA K, TOMKO JR.R J. Proteasome subunit α1 overexpression preferentially drives canonical proteasome biogenesis and enhances stress tolerance in yeast[J]Sci Rep, 2019, 9( 1): 12418.
doi: 10.1038/s41598-019-48889-5
[46]   RUTW, DRAGM. Human 20S proteasome activity towards fluorogenic peptides of various chain lengths[J]Biol Chem, 2016, 397( 9): 921-926.
doi: 10.1515/hsz-2016-0176
[47]   DIKICI. Proteasomal and autophagic degradation systems[J]Annu Rev Biochem, 2017, 86( 1): 193-224.
doi: 10.1146/annurev-biochem-061516-044908
[48]   QIN J, LONG B, LUO L, et al. Identification of proteasome subunit alpha type-1 as a novel biomarker in HBV-associated hepatocellular carcinoma tissue interstitial fluid by proteomic analysis[J]. Int J Clin Exp Pathol, 2017, 10(7): 7812-7820
[49]   TANY, QINS, HOUX, et al.Proteomic-based analysis for identification of proteins involved in 5-fluorouracil resistance in hepatocellular carcinoma[J]Curr Pharm Des, 2014, 20( 1): 81-87.
doi: 10.2174/138161282001140113125143
[50]   BAIZD, POZZATOG, DAPASB, et al.Bortezomib arrests the proliferation of hepatocellular carcinoma cells HepG2 and JHH6 by differentially affecting E2F1, p21 and p27 levels[J]Biochimie, 2009, 91( 3): 373-382.
doi: 10.1016/j.biochi.2008.10.015
[51]   HUANGI T, DHUNGELB, SHRESTHAR, et al.Spotlight on Bortezomib: potential in the treatment of hepatocellular carcinoma[J]Expert Opin Investig Drugs, 2019, 28( 1): 7-18.
doi: 10.1080/13543784.2019.1551359
[52]   AUGELLOG, MODICAM, AZZOLINAA, et al.Preclinical evaluation of antitumor activity of the proteasome inhibitor MLN2238 (ixazomib) in hepatocellular carcinoma cells[J]Cell Death Dis, 2018, 9( 2): 28.
doi: 10.1038/s41419-017-0195-0
[1] GE Yingzhou,LIU Xinmei,HUANG Hefeng. Advances in the role of silence information regulator family in pathological pregnancy[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 335-344.
[2] WANG Jintao,HUANG Lei,WEI Lili,CHEN Wei. Factors affecting the efficacy of repetitive transcranial magnetic stimulation for patients with Alzheimer’s disease[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 383-389.
[3] ZHUANG Wenwen,YANG Yongqi,LI Hongliang,LIANG Jingyan. Research advance of Nrf2 on atherosclerosis by regulating vascular smooth muscle cell[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 390-395.
[4] REN Chaojie,ZHONG Danni,ZHOU Min. Research progress on the biomedical application of microalgae[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 261-266.
[5] YING Yingchao,JIANG Peifang. Research progress on transient receptor potential melastatin 2 channel in nervous system diseases[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 267-276.
[6] KUANG Wenjing,LUO Xiaobo,WANG Jiongke,ZENG Xin. Research progress on Melkersson-Rosenthal syndrome[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 148-154.
[7] WANG Chenyu,WANG Yingnan,WANG Cunyi,SHI Jiejun,WANG Huiming. Research progress on tissue engineering in repairing temporo-mandibular joint[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 212-221.
[8] SHAO Yiming,SU Lide,HAO Rui,WANG Qianqian,NARANMANDURA Hua. Advances on molecular mechanism of hepatitis B virus-induced hepatocellular carcinoma[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 113-122.
[9] HAN Hengyi,FENG Fan,LI Haitao. Research advances on epigenetics and cancer metabolism[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 1-16.
[10] CHEN Fei,YU Min,ZHONG Yonghong,HUA Wen,HUANG Huaqiong. The role of neutrophils in asthma[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 123-130.
[11] YAN Jing,ZHANG Tingting,ZHAO Kui. Application of molecular probes in nuclear imaging of neuroendocrine tumors[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 131-137.
[12] ZHANG Mingquan,PAN Junchen,HUANG Peng. Interaction between RAS gene and lipid metabolism in cancer[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 17-22.
[13] HU Xinyang,JIN Hongchuan,ZHU Liyuan. Effect of glutamine metabolism on chemoresistance and its mechanism in tumors[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 32-40.
[14] MENG Ying,WANG Qifei,LYU Zhimin. Cholesterol metabolism and tumor[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 23-31.
[15] WANG Yanan,YAN Xiaoming,ZHANG Qingyu,SONG Aihua,HAN Fei. Study on the mechanism of Flos Puerariae and Semen Hoveniae in treatment of alcoholic liver injury based on network pharmacology and molecular docking[J]. J Zhejiang Univ (Med Sci), 2020, 49(6): 714-724.