|
|
Research progress on proteasome subunits in regulating occurrence and development of hepatocellular carcinoma |
HU Jingyi( ),WANG Qingqing,LIU Yang( ) |
Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China |
|
|
Abstract Proteasome is the eukaryotic organelle responsible for degradation of short-lived proteins and involved in maintaining cellular protein homeostasis. It has been reported that during the occurrence and development of hepatocellular carcinoma (HCC), the regulatory particle subunits of proteasome regulate a series of tumor-related proteins, and proliferation, survival-associated signaling molecules, including PTEN gene, P53, Bcl-2, Bcl-2 interacting mediator of cell death (Bim), cyclin-dependent kinase 4(CDK4), transforming growth factor β receptor (TGFBR), E2F1, growth factor receptor-bound protein 2 (GRB2) . Meanwhile, these subunits regulate some tumor-associated pathway protein, such as signal transducer and activator of transcription 3 (STAT3) and protein kinase B (AKT), inducing their malfunction to promote the occurrence, proliferation, invasion and metastasis of HCC. The core particle subunits are more to perform the degradation of HCC-related proteins, so inhibitors targeting the core particle show a good anti-tumor effect. This review summarizes the current research progress on the regulation and mechanism of proteasome subunits in promoting the occurrence and development of HCC.
|
Received: 11 January 2021
Published: 16 August 2021
|
|
Corresponding Authors:
LIU Yang
E-mail: hjy558@zju.edu.cn;liuyang0620@zju.edu.cn
|
蛋白酶体亚基对肝细胞癌发生发展的调控作用研究进展
蛋白酶体是真核细胞中负责降解细胞内短寿命蛋白、参与维持细胞内蛋白质稳态的重要细胞器。研究表明,在肝细胞癌(HCC)的发生发展进程中,蛋白酶体调节颗粒亚基可通过调节PTEN基因、P53、Bcl-2、Bcl-2相互作用的细胞死亡介体蛋白、周期蛋白依赖性激酶4、β型转化生长因子受体、E2F1、生长因子受体结合蛋白2等多种肿瘤相关蛋白以及相关的通路分子,例如信号转导及转录激活蛋白3、蛋白激酶B,诱使这些蛋白质功能失调,进而促进HCC的发生,癌细胞增殖、侵袭与转移。蛋白酶体核心颗粒亚基则更多参与HCC相关蛋白的降解,因此核心颗粒的抑制剂表现出良好的抗肿瘤效应。本文就当前蛋白酶体调节颗粒亚基和核心颗粒亚基在HCC发生发展过程中的调控作用及其机制进行综述。
关键词:
蛋白酶体,
蛋白酶体调节颗粒,
蛋白酶体核心颗粒,
肝细胞癌,
机制,
综述
|
|
[1] |
BARDJ A M, GOODALLE A, GREENEE R, et al.Structure and function of the 26S proteasome[J]Annu Rev Biochem, 2018, 87( 1): 697-724.
doi: 10.1146/annurev-biochem-062917-011931
|
|
|
[2] |
COUXO, TANAKAK, GOLDBERGA L. Structure and functions of the 20S and 26S proteasomes[J]Annu Rev Biochem, 1996, 65( 1): 801-847.
doi: 10.1146/annurev.bi.65.070196.004101
|
|
|
[3] |
BRAYF, FERLAYJ, SOERJOMATARAMI, et al.Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]CA Cancer J Clin, 2018, 68( 6): 394-424.
doi: 10.3322/caac.21492
|
|
|
[4] |
WILLIAMSB R, PRABHUV R, HUNTERK E, et al.Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells[J]Science, 2008, 322( 5902): 703-709.
doi: 10.1126/science.1160058
|
|
|
[5] |
DESHAIESR J. Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy[J]BMC Biol, 2014, 12( 1): 94.
doi: 10.1186/s12915-014-0094-0
|
|
|
[6] |
A three-drug combo for multiple myeloma[J]. Cancer Discov, 2016, 6(11): Of4
|
|
|
[7] |
MOREAUP, MASSZIT, GRZASKON, et al.Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma[J]N Engl J Med, 2016, 374( 17): 1621-1634.
doi: 10.1056/NEJMoa1516282
|
|
|
[8] |
LUDWIGH, POENISCHW, KNOPS, et al.Ixazomib–Thalidomide–Dexamethasone for induction therapy followed by Ixazomib maintenance treatment in patients with relapsed/refractory multiple myeloma[J]Br J Cancer, 2019, 121( 9): 751-757.
doi: 10.1038/s41416-019-0581-8
|
|
|
[9] |
HOUJ, JINJ, XUY, et al.Randomized, double-blind, placebo-controlled phase Ⅲ study of ixazomib plus lenalidomide-dexamethasone in patients with relapsed/refractory multiple myeloma: China continuation study[J]J Hematol Oncol, 2017, 10( 1): 137.
doi: 10.1186/s13045-017-0501-4
|
|
|
[10] |
THROWERJ S, HOFFMANL, RECHSTEINERM, et al.Recognition of the polyubiquitin proteolytic signal[J]EMBO J, 2000, 19( 1): 94-102.
doi: 10.1093/emboj/19.1.94
|
|
|
[11] |
VERMAR, ARAVINDL, OANIAR, et al.Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome[J]Science, 2002, 298( 5593): 611-615.
doi: 10.1126/science.1075898
|
|
|
[12] |
WANGB, XUX, YANGZ, et al.POH1 contributes to hyperactivation of TGF-β signaling and facilitates hepatocellular carcinoma metastasis through deubiquitinating TGF-β receptors and caveolin-1[J]EBioMedicine, 2019, 320-332.
doi: 10.1016/j.ebiom.2019.01.058
|
|
|
[13] |
CHENY G. Endocytic regulation of TGF-β signaling[J]Cell Res, 2009, 19( 1): 58-70.
doi: 10.1038/cr.2008.315
|
|
|
[14] |
WANGB, MAA, ZHANGL, et al.POH1 deubiquitylates and stabilizes E2F1 to promote tumour formation[J]Nat Commun, 2015, 6( 1): 8704.
doi: 10.1038/ncomms9704
|
|
|
[15] |
LVJ, ZHANGS, WUH, et al.Deubiquitinase PSMD14 enhances hepatocellular carcinoma growth and metastasis by stabilizing GRB2[J]Cancer Lett, 2020, 22-34.
doi: 10.1016/j.canlet.2019.10.025
|
|
|
[16] |
WANGC H, LUS X, LIUL L, et al.POH1 knockdown induces cancer cell apoptosis via p53 and bim[J]Neoplasia, 2018, 20( 5): 411-424.
doi: 10.1016/j.neo.2018.02.005
|
|
|
[17] |
OLIVARESA O, BAKERT A, SAUERR T. Mechanical protein unfolding and degradation[J]Annu Rev Physiol, 2018, 80( 1): 413-429.
doi: 10.1146/annurev-physiol-021317-121303
|
|
|
[18] |
MARTINEZ-FONTSK, DAVISC, TOMITAT, et al.The proteasome 19S cap and its ubiquitin receptors provide a versatile recognition platform for substrates[J]Nat Commun, 2020, 11( 1): 477.
doi: 10.1038/s41467-019-13906-8
|
|
|
[19] |
BUDENHOLZERL, CHENGC L, LIY, et al.Proteasome structure and assembly[J]J Mol Biol, 2017, 429( 22): 3500-3524.
doi: 10.1016/j.jmb.2017.05.027
|
|
|
[20] |
XIONGW, WANGW, HUANGH, et al.Prognostic significance of PSMD1 expression in patients with gastric cancer[J]J Cancer, 2019, 10( 18): 4357-4367.
doi: 10.7150/jca.31543
|
|
|
[21] |
OKUMURAT, IKEDAK, UJIHIRAT, et al.Proteasome 26S subunit PSMD1 regulates breast cancer cell growth through p53 protein degradation[J]J Biochem, 2018, 163( 1): 19-29.
doi: 10.1093/jb/mvx053
|
|
|
[22] |
LIY, HUANGJ, ZENGB, et al.PSMD2 regulates breast cancer cell proliferation and cell cycle progression by modulating p21 and p27 proteasomal degradation[J]Cancer Lett, 2018, 109-122.
doi: 10.1016/j.canlet.2018.05.018
|
|
|
[23] |
TANY, JINY, WUX, et al.PSMD1 and PSMD2 regulate HepG2 cell proliferation and apoptosis via modulating cellular lipid droplet metabolism[J]BMC Mol Biol, 2019, 20( 1): 24.
doi: 10.1186/s12867-019-0141-z
|
|
|
[24] |
COLLINSG A, GOLDBERGA L. The logic of the 26s proteasome[J]Cell, 2017, 169( 5): 792-806.
doi: 10.1016/j.cell.2017.04.023
|
|
|
[25] |
JIANGZ, ZHOUQ, GEC, et al.Rpn10 promotes tumor progression by regulating hypoxia-inducible factor 1 alpha through the PTEN/Akt signaling pathway in hepatocellular carcinoma[J]Cancer Lett, 2019, 1-11.
doi: 10.1016/j.canlet.2019.01.020
|
|
|
[26] |
CAIM J, CUIY, FANGM, et al.Inhibition of PSMD4 blocks the tumorigenesis of hepatocellular carcinoma[J]Gene, 2019, 66-74.
doi: 10.1016/j.gene.2019.03.063
|
|
|
[27] |
YANG X, MIAO X, WEN Y, et al. A possible connection between adhesion regulating molecule 1 overexpression and nuclear factor kappa B activity in hepatocarcinogenesis[J]. Oncol Rep, 2012, 28(1): 283-290
|
|
|
[28] |
SOONGR S, ANCHOORIR K, RODENR B S, et al.Bis-benzylidine piperidone RA190 treatment of hepatocellular carcinoma via binding RPN13 and inhibiting NF-κB signaling[J]BMC Cancer, 2020, 20( 1): 386.
doi: 10.1186/s12885-020-06896-0
|
|
|
[29] |
RABLJ, SMITHD M, YUY, et al.Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases[J]Mol Cell, 2008, 30( 3): 360-368.
doi: 10.1016/j.molcel.2008.03.004
|
|
|
[30] |
QINJ, WANGW, ANF, et al.PSMC2 is up-regulated in pancreatic cancer and promotes cancer cell proliferation and inhibits apoptosis[J]J Cancer, 2019, 10( 20): 4939-4946.
doi: 10.7150/jca.27616
|
|
|
[31] |
LIUY, CHENH, LIX, et al.PSMC2 regulates cell cycle progression through the p21/cyclin d1 pathway and predicts a poor prognosis in human hepatocellular carcinoma[J]Front Oncol, 2021, 607021.
doi: 10.3389/fonc.2021.607021
|
|
|
[32] |
SHIC X, KORTüMK M, ZHUY X, et al.CRISPR genome-wide screening identifies dependence on the proteasome subunit psmc6 for bortezomib sensitivity in multiple myeloma[J]Mol Cancer Ther, 2017, 16( 12): 2862-2870.
doi: 10.1158/1535-7163.MCT-17-0130
|
|
|
[33] |
YUT, TAOY, YANGM, et al.Profiling human protein degradome delineates cellular responses to proteasomal inhibition and reveals a feedback mechanism in regulating proteasome homeostasis[J]Cell Res, 2014, 24( 10): 1214-1230.
doi: 10.1038/cr.2014.122
|
|
|
[34] |
ZHANGZ, TORIIN, FURUSAKAA, et al.Structural and functional characterization of interaction between hepatitis B virus X protein and the proteasome complex[J]J Biol Chem, 2000, 275( 20): 15157-15165.
doi: 10.1074/jbc.M910378199
|
|
|
[35] |
CUIF, WANGY, WANGJ, et al.The up-regulation of proteasome subunits and lysosomal proteases in hepatocellular carcinomas of theHBx gene knockin transgenic mice[J]Proteomics, 2006, 6( 2): 498-504.
doi: 10.1002/pmic.200500218
|
|
|
[36] |
FUJITA J, SAKURAI T. The oncoprotein gankyrin/PSMD10 as a target of cancer therapy[J]. Adv Exp Med Biol, 2019, 1164: 63-71
|
|
|
[37] |
DAWSONS, APCHERS, MEEM, et al.Gankyrin is an ankyrin-repeat oncoprotein that interacts with CDK4 kinase and the S6 ATPase of the 26 S proteasome[J]J Biol Chem, 2002, 277( 13): 10893-10902.
doi: 10.1074/jbc.M107313200
|
|
|
[38] |
JIANGY, IAKOVAP, JINJ, et al.Farnesoid X receptor inhibits gankyrin in mouse livers and prevents development of liver cancer[J]Hepatology, 2013, 57( 3): 1098-1106.
doi: 10.1002/hep.26146
|
|
|
[39] |
SAKURAIT, YADAN, HAGIWARAS, et al.Gankyrin induces STAT 3 activation in tumor microenvironment and sorafenib resistance in hepatocellular carcinoma[J]Cancer Sci, 2017, 108( 10): 1996-2003.
doi: 10.1111/cas.13341
|
|
|
[40] |
FUJ, CHENY, CAOJ, et al.p28GANK overexpression accelerates hepatocellular carcinoma invasiveness and metastasis via phosphoinositol 3-kinase/AKT/hypoxia-inducible factor-1α pathways[J]Hepatology, 2011, 53( 1): 181-192.
doi: 10.1002/hep.24015
|
|
|
[41] |
LUOT, FUJ, XUA, et al.PSMD10/gankyrin induces autophagy to promote tumor progression through cytoplasmic interaction with ATG7 and nuclear transactivation of ATG7 expression[J]Autophagy, 2016, 12( 8): 1355-1371.
doi: 10.1080/15548627.2015.1034405
|
|
|
[42] |
YANGC, TANY X, YANGG Z, et al.Gankyrin has an antioxidative role through the feedback regulation of Nrf2 in hepatocellular carcinoma[J]J Exp Med, 2016, 213( 5): 859-875.
doi: 10.1084/jem.20151208
|
|
|
[43] |
LIUR, LIY, TIANL, et al.Gankyrin drives metabolic reprogramming to promote tumorigenesis, metastasis and drug resistance through activating β-catenin/c-Myc signaling in human hepatocellular carcinoma[J]Cancer Lett, 2019, 34-46.
doi: 10.1016/j.canlet.2018.11.030
|
|
|
[44] |
VANDER HEIDENM G, DEBERARDINISR J. Understanding the intersections between metabolism and cancer biology[J]Cell, 2017, 168( 4): 657-669.
doi: 10.1016/j.cell.2016.12.039
|
|
|
[45] |
HOWELLL A, PETERSONA K, TOMKO JR.R J. Proteasome subunit α1 overexpression preferentially drives canonical proteasome biogenesis and enhances stress tolerance in yeast[J]Sci Rep, 2019, 9( 1): 12418.
doi: 10.1038/s41598-019-48889-5
|
|
|
[46] |
RUTW, DRAGM. Human 20S proteasome activity towards fluorogenic peptides of various chain lengths[J]Biol Chem, 2016, 397( 9): 921-926.
doi: 10.1515/hsz-2016-0176
|
|
|
[47] |
DIKICI. Proteasomal and autophagic degradation systems[J]Annu Rev Biochem, 2017, 86( 1): 193-224.
doi: 10.1146/annurev-biochem-061516-044908
|
|
|
[48] |
QIN J, LONG B, LUO L, et al. Identification of proteasome subunit alpha type-1 as a novel biomarker in HBV-associated hepatocellular carcinoma tissue interstitial fluid by proteomic analysis[J]. Int J Clin Exp Pathol, 2017, 10(7): 7812-7820
|
|
|
[49] |
TANY, QINS, HOUX, et al.Proteomic-based analysis for identification of proteins involved in 5-fluorouracil resistance in hepatocellular carcinoma[J]Curr Pharm Des, 2014, 20( 1): 81-87.
doi: 10.2174/138161282001140113125143
|
|
|
[50] |
BAIZD, POZZATOG, DAPASB, et al.Bortezomib arrests the proliferation of hepatocellular carcinoma cells HepG2 and JHH6 by differentially affecting E2F1, p21 and p27 levels[J]Biochimie, 2009, 91( 3): 373-382.
doi: 10.1016/j.biochi.2008.10.015
|
|
|
[51] |
HUANGI T, DHUNGELB, SHRESTHAR, et al.Spotlight on Bortezomib: potential in the treatment of hepatocellular carcinoma[J]Expert Opin Investig Drugs, 2019, 28( 1): 7-18.
doi: 10.1080/13543784.2019.1551359
|
|
|
[52] |
AUGELLOG, MODICAM, AZZOLINAA, et al.Preclinical evaluation of antitumor activity of the proteasome inhibitor MLN2238 (ixazomib) in hepatocellular carcinoma cells[J]Cell Death Dis, 2018, 9( 2): 28.
doi: 10.1038/s41419-017-0195-0
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|