Please wait a minute...
J Zhejiang Univ (Med Sci)  2021, Vol. 50 Issue (1): 131-137    DOI: 10.3724/zdxbyxb-2021-0031
    
Application of molecular probes in nuclear imaging of neuroendocrine tumors
YAN Jing(),ZHANG Tingting,ZHAO Kui()
Department of PET,the First Affiliated Hospital,Zhejiang University School of Medicine,Hangzhou 310003,China
Download: HTML( 22 )   PDF(2054KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Neuroendocrine tumors are a type of heterogeneous tumors originating from neuroendocrine cells derived from the neural crest,which can secrete a variety of amines and peptide hormones.Based on different molecular biomarkers,histologic types and differentiation degrees,individualized nuclear imaging can provide information for the early diagnosis,clinical staging,treatment guidance,and detection of the recurrence and metastasis of neuroendocrine tumor. In this paper,we review the development and application of nuclear medicine molecular imaging probes such as glucose analogs,somatostatin analogues,amine precursors,hormone analogs and enzyme inhibitors in the diagnosis and treatment of neuroendocrine tumors.



Key wordsNeuroendocrine tumors      Diagnosis      Molecular probe      Nuclear medicine imaging      Review     
Received: 03 August 2020      Published: 16 May 2021
CLC:  R445.5  
  R445.5  
  A  
Corresponding Authors: ZHAO Kui     E-mail: yanjing9986@163.com;zyzhaokui@163.com
Cite this article:

YAN Jing,ZHANG Tingting,ZHAO Kui. Application of molecular probes in nuclear imaging of neuroendocrine tumors. J Zhejiang Univ (Med Sci), 2021, 50(1): 131-137.

URL:

http://www.zjujournals.com/med/10.3724/zdxbyxb-2021-0031     OR     http://www.zjujournals.com/med/Y2021/V50/I1/131


核医学分子影像探针应用于神经内分泌肿瘤的研究进展

神经内分泌肿瘤起源于神经嵴来源的神经内分泌细胞,可分泌多种胺和多肽激素进入全身循环。核医学分子影像探针在神经内分泌肿瘤的早期诊断、临床分期、治疗方案选择、复发和转移病灶的探查中具有重要意义,临床可根据神经内分泌肿瘤细胞增殖及分化程度、细胞表面的分子表达、肿瘤部位选择分子影像探针进行个体化显像。本文就葡萄糖类似物显像剂、生长抑素类似物显像剂、胺前体类显像剂、激素类似物显像剂和酶抑制剂类显像剂等核医学分子影像探针在神经内分泌肿瘤诊断和治疗中的发展及应用进行综述。


关键词: 神经内分泌肿瘤,  诊断,  分子探针,  核医学显像,  综述 

探针类型

显像剂

检查方法

适用类型

优点

缺点

葡萄糖类似物

18F-FDG

PET/CT、PET/MR

中高级别NET

广谱肿瘤显像剂,能用于高级别(G3)NET

对低级别(G1~G2)NET敏感度低

生长抑素类似物

123I/ 111In-奥曲肽(喷曲肽)

γ相机、SPECT、SPECT/CT

SSTR表达NET,包括胃肠胰NET、肺类癌、嗜铬细胞瘤及副交感神经节瘤;PRRT治疗前影像学评估

最早进入临床的生长抑素受体类显像剂

受显像设备影响,分辨率较低、肝脏生理性摄取高

68Ga-DOTA-多肽

PET/CT、PET/MR

可与SSTR高表达的NET特异性结合,PRRT治疗前影像评估

合成成本较高,产量较低

18F-AlF-NOTA-奥曲肽

PET/CT、PET/MR

肝脏本底较低, 18F半衰期较长,利于临床推广

相关文献报道较少

胺前体类

11C-5-羟色胺

PET/CT、PET/MR

所有类型的NET,包括类癌及胰腺内分泌瘤

适用于SSTR表达不确定NET

11C半衰期短,生产复杂,产量较低,应用受限

18F-FDOPA

PET/CT、PET/MR

分化好、血清素A升高的NET,尤其是低SSTR表达或表达不确定的 NET

适用于SSTR表达不确定的或中肠型NET

胰腺本底较高

激素类似物

131I/ 123I/间碘卞胍

SPECT、SPECT/CT

嗜铬细胞瘤及神经节瘤

肾上腺髓质显像剂,核素治疗评估

所标记放射性核素生物半衰期过短或 过长

11C-羟基麻黄碱

PET/CT、PET/MR

嗜铬细胞瘤

在嗜铬细胞瘤中的敏感度和特异性高

对染色体遗传相关的NET不敏感

酶抑制剂

11C-依托咪酯

PET/CT、PET/MR

肾上腺皮质来源肿瘤

肾上腺皮质来源的NET

11C半衰期短,不利于储存及运输

123I-碘甲咪唑

SPECT、SPECT/CT

肾上腺皮质癌

123I半衰期长(13.2?h)

Table 1 Application of molecular probes in nuclear imaging of neuroendocrine tumors (NET)
[1]   YAO J C, HASSAN M, PHAN A, et al. One hundred years after “carcinoid”:epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States [J]. J Clin Oncol, 2008, 26(18): 3063-3072.
doi: 10.1200/JCO.2007.15.4377
[2]   DASARI A, SHEN C, HALPERIN D, et al. Trends in the incidence,prevalence,and survival outcomes in patients with neuroendocrine tumors in the United States [J]. JAMA Oncol, 2017, 3(10): 1335.
doi: 10.1001/jamaoncol.2017.0589
[3]   KIM J Y, HONG S M, RO J Y . Recent updates on grading and classification of neuroendocrine tumors [J]. Ann Diagnostic Pathol, 2017, 11-16.
doi: 10.1016/j.anndiagpath.2017.04.005
[4]   王 玲,胡桂兰,乔 真,等. 神经内分泌肿瘤转移灶PET/CT生长抑素受体显像特点分析[J]. 中华核医学与分子影像杂志,2017,37(3): 132136. DOI: 10.3760/cma.j.issn.2095-2848.2017.03.003 .
[5]   PRASAD V, AMBROSINI V, HOMMANN M, et al. Detection of unknown primary neuroendocrine tumours (CUP-NET) using 68Ga-DOTA-NOC receptor PET/CT [J]. Eur J Nucl Med Mol Imag, 2010, 37(1): 67-77.
doi: 10.1007/s00259-009-1205-y
[6]   姚晓晨,王 峰. 胃肠胰神经内分泌肿瘤的影像学诊断[J]. 浙江大学学报(医学版),2016,45(1): 51–55. DOI: 10.3785/j.issn.1008-9292.2016.01.08 .
[7]   HAS SIMSEK D, KUYUMCU S, TURKMEN C, et al. Can complementary 68Ga-DOTATATE and 18F-FDG PET/CT establish the missing link between histopathology and therapeutic approach in gastro- enteropancreatic neuroendocrine tumors? [J]. J Nucl Med, 2014, 55(11): 1811-1817.
doi: 10.2967/jnumed.114.142224
[8]   BUCAU M, LAURENT-BELLUE A, POTé N, et al. 18F-FDG uptake in well-differentiated neuroendocrine tumors correlates with both Ki-67 and VHL pathway inactivation [J]. Neuroendocrinology, 2018, 106(3): 274-282.
doi: 10.1159/000480239
[9]   VAN ESSEN M, SUNDIN A, KRENNING E P, et al. Neuroendocrine tumours:the role of imaging for diagnosis and therapy [J]. Nat Rev Endocrinol, 2014, 10(2): 102-114.
doi: 10.1038/nrendo.2013.246
[10]   ZER A, DOMACHEVSKY L, RAPSON Y, et al. The role of 18F-FDG PET/CT on staging and prognosis in patients with small cell lung cancer [J]. Eur Radiol, 2016, 26(9): 3155-3161.
doi: 10.1007/s00330-015-4132-2
[11]   KAUHANEN S, SCHALIN-J?NTTI C, SEPP?NEN M, et al. Complementary roles of 18F-DOPA PET/CT and 18F-FDG PET/CT in medullary thyroid cancer [J]. J Nucl Med, 2011, 52(12): 1855-1863.
doi: 10.2967/jnumed.111.094771
[12]   GEIJER H, BREIMER L H . Somatostatin receptor PET/CT in neuroendocrine tumours:update on systematic review and meta-analysis [J]. Eur J Nucl Med Mol Imag, 2013, 40(11): 1770-1780.
doi: 10.1007/s00259-013-2482-z
[13]   KAEMMERER D, PETER L, LUPP A, et al. Molecular imaging with 68Ga-SSTR PET/CT and correlation to immunohistochemistry of somatostatin receptors in neuroendocrine tumours [J]. Eur J Nucl Med Mol Imag, 2011, 38(9): 1659-1668.
doi: 10.1007/s00259-011-1846-5
[14]   LOCOCO F, PEROTTI G, CARDILLO G, et al. Multicenter comparison of 18F-FDG and 68Ga-DOTA-peptide PET/CT for pulmonary carcinoid [J/OL]. Clin Nucl Med, 2015, 40(3): e183-e189.
doi: 10.1097/RLU.0000000000000641
[15]   NASWA N, SHARMA P, SUMAN KC S, et al. Prospective evaluation of 68Ga-DOTA-NOC PET-CT in patients with recurrent medullary thyroid carcinoma [J]. Nucl Med Commun, 2012, 33(7): 766-774.
doi: 10.1097/MNM.0b013e3283541157
[16]   HERRMANN K, CZERNIN J, WOLIN E M, et al. Impact of 68Ga-DOTATATE PET/CT on the management of neuroendocrine tumors:the referring physician’s perspective [J]. J Nucl Med, 2015, 56(1): 70-75.
doi: 10.2967/jnumed.114.148247
[17]   LONG T, YANG N, ZHOU M, et al. Clinical application of 18F-AlF-NOTA-octreotide PET/CT in combination with 18F-FDG PET/CT for imaging neuroendocrine neoplasms [J]. Clin Nucl Med, 2019, 44(6): 452-458.
doi: 10.1097/RLU.0000000000002578
[18]   刘会攀,陈 跃. 放射性核素诊治神经内分泌肿瘤的应用进展[J]. 中华核医学与分子影像杂志,2019,39(9): 564567.DOI: 10.3760/cma.j.issn.2095-2848.2019.09.015 .
[19]   GRISANTI S, FILICE A, BASILE V, et al. Treatment with 90Y/177Lu-DOTATOC in patients with metastatic adrenocortical carcinoma expressing somatostatin receptors [J/OL]. J Clin Endocrinol Metab, 2020, 105(3): e1-e5.
doi: 10.1210/clinem/dgz091
[20]   RUFINI V, BAUM R P, CASTALDI P, et al. Role of PET/CT in the functional imaging of endocrine pancreatic tumors [J]. Abdom Imag, 2012, 37(6): 1004-1020.
doi: 10.1007/s00261-012-9871-9
[21]   SANTHANAM P, CHANDRAMAHANTI S, KROISS A, et al. Nuclear imaging of neuroendocrine tumors with unknown primary:why,when and how? [J]. Eur J Nucl Med Mol Imag, 2015, 42(7): 1144-1155.
doi: 10.1007/s00259-015-3027-4
[22]   NANNI C, RUBELLO D, FANTI S . 18F-DOPA PET/CT and neuroendocrine tumours[J]. Eur J Nucl Med Mol Imag, 2006, 33(5): 509-513.
doi: 10.1007/s00259-006-0079-5
[23]   BANDOPADHYAYA G P,KUMAR A,KUMARI J. Role of (18)F-DOPA PET/CT and (131)I-MIBG planar scintigraphy in evaluating patients with pheochromocytoma[J]. Hell J Nucl Med,2015,18 Suppl 1:141 .
[24]   BACCA A, CHIACCHIO S, ZAMPA V, et al. Role of 18F-DOPA PET/CT in diagnosis and follow-up of adrenal and extra-adrenal paragangliomas [J]. Clin Nucl Med, 2014, 39(1): 14-20.
doi: 10.1097/RLU.0000000000000242
[25]   BOZKURT M F, VIRGOLINI I, BALOGOVA S, et al. Erratum to:Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTA-conjugated somatostatin receptor targeting peptides and 18F–DOPA [J]. Eur J Nucl Med Mol Imag, 2017, 44(12): 2150-2151.
doi: 10.1007/s00259-017-3807-0
[26]   IMPERIALE A, RUST E, GABRIEL S, et al. 18F-fluorodihydroxyphenylalanine PET/CT in patients with neuroendocrine tumors of unknown origin:relation to tumor origin and differentiation[J]. J Nucl Med, 2014, 55(3): 367-372.
doi: 10.2967/jnumed.113.126896
[27]   KUIK W J, KEMA I P, BROUWERS A H, et al. In vivo biodistribution of no-carrier-added 6-18F-fluoro-3,4-dihydroxy-L-phenylalanine (18F-DOPA),produced by a new nucleophilic substitution approach,compared with carrier-added 18F-DOPA,prepared by conventional electrophilic substitution [J] . J Nucl Med, 2015, 56(1): 106-112.
doi: 10.2967/jnumed.114.145730
[28]   ORLEFORS H, SUNDIN A, LU L, et al. Carbidopa pretreatment improves image interpretation and visualisation of carcinoid tumours with 11C-5-hydroxytryptophan positron emission tomography [J]. Eur J Nucl Med Mol Imag, 2006, 33(1): 60-65.
doi: 10.1007/s00259-005-1891-z
[29]   PASHANKAR F D,O′DORISIO M S,MENDA Y. MIBG and somatostatin receptor analogs in children: current concepts on diagnostic and therapeutic use[J]. J Nucl Med,2005,46 Suppl 1:55S–61S .
[30]   YAMAMOTO S, HELLMAN P, WASSBERG C, et al. 11C-hydroxyephedrine positron emission tomography imaging of pheochromocytoma:a single center experience over 11 years [J]. J Clin Endocrinol Metab, 2012, 97(7): 2423-2432.
doi: 10.1210/jc.2011-3342
[31]   HAHNER S, SUNDIN A . Metomidate-based imaging of adrenal masses [J]. HORM CANC, 2011, 2(6): 348-353.
doi: 10.1007/s12672-011-0093-3
[1] SHAO Yiming,SU Lide,HAO Rui,WANG Qianqian,NARANMANDURA Hua. Advances on molecular mechanism of hepatitis B virus-induced hepatocellular carcinoma[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 113-122.
[2] HAN Hengyi,FENG Fan,LI Haitao. Research advances on epigenetics and cancer metabolism[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 1-16.
[3] CHEN Fei,YU Min,ZHONG Yonghong,HUA Wen,HUANG Huaqiong. The role of neutrophils in asthma[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 123-130.
[4] ZHANG Mingquan,PAN Junchen,HUANG Peng. Interaction between RAS gene and lipid metabolism in cancer[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 17-22.
[5] HU Xinyang,JIN Hongchuan,ZHU Liyuan. Effect of glutamine metabolism on chemoresistance and its mechanism in tumors[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 32-40.
[6] MENG Ying,WANG Qifei,LYU Zhimin. Cholesterol metabolism and tumor[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 23-31.
[7] WANG Subo,ZHAO Zhenhua,ZHANG Yu,YANG Liming,HUANG Yanan,RUAN Yawen,WANG Cheng. Quantitative perfusion histogram parameters of dynamic contrast-enhanced MRI to identify different pathological types of uterine leiomyoma[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 97-105.
[8] ZHU Huiqi,YING Kejing. Tissue factors and venous thromboembolism in cancer patients[J]. J Zhejiang Univ (Med Sci), 2020, 49(6): 772-778.
[9] LIN Cuicui,CHEN Zhengyun,WANG Chunyan,XI Yongmei. Research progress on biomarkers for endometriosis based on lipidomics[J]. J Zhejiang Univ (Med Sci), 2020, 49(6): 779-784.
[10] Division of Genetics and Metabolism, Child Diseases and Health Care Branch, Chinese Association for Maternal and Child Health . Consensus on diagnosis and treatment of ornithine trans-carbamylase deficiency[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 539-547.
[11] JIN Xiaoxiao,JIN Pengzhen,YAN Kai,QIAN Yeqing,DONG Minyue. Genetic analysis of a mosaic case with low proportion mutation of TSC2 gene[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 586-590.
[12] LI Mengyao,LIU Pan,KE Yuehai,ZHANG Xue. Research progress on macrophage in radiation induced lung injury[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 623-628.
[13] HAN Xue,JIANG Guojun,SHI Qiaojuan. Effects of antihyperglycemics on endothelial progenitor cells[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 629-636.
[14] DUAN Runping,XU Yesheng,ZHENG Libin,YAO Yufeng. Research progress on etiologic diagnosis of ocular viral diseases[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 644-650.
[15] WU Wei,XU Jian. Research progress on the role of pentraxin 3 in polycystic ovary syndrome[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 637-643.