Please wait a minute...
J Zhejiang Univ (Med Sci)  2019, Vol. 48 Issue (6): 617-624    DOI: 10.3785/j.issn.1008-9292.2019.12.05
    
Effects of resveratrol on aging of mesenchymal stem cells and its mechanism
ZHANG Dayong1(),LIN Jiuzhou1,WANG Yayan1,XU Shan1,LUO Chengzhuan1,CAI Jiaye1,JIANG Xuefan2,PAN Jianping1,*()
1. School of Medicine, Zhejiang University City College, Hangzhou 310015, China
2. Department of Otolaryngology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
Download: HTML( 16 )   PDF(8207KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To investigate the effects of resveratrol (Res) on aging of marrow mesenchymal stem cells (MSCs), and to explore its mechanism. Methods: MSCs were isolated from young SD rats and cultured in vitro. The optimal D-gal concentration for induction of MSCs senescence was determined. Then MSCs were randomly divided into four groups, namely the control group, 10μmol/L, 50μmol/L and 100μmol/L Res groups. After the cells were treated with different concentration of Res for 48 h, the senescence-associated changes were examined with senescence-associated-β-galactosidase (SA-β-gal) staining; the expression of p53, p16 and γ-H2AX was evaluated by Western blot. The total active oxygen species (ROS) level was determined by flow cytometry with DCFH-DA staining. In order to assess the effect of Res on the mitochondrial function, MitoSox Red staining was used to detect mitochondrial ROS levels in each group, mitochondrial membrane potential was detected by JC-1 assay, mPTP method was used to detect mitochondrial membrane channel opening level, and Western blot was used to detect the expression level of cytoplasmic cytochrome C (Cyt-C). Results: D-gal 10 and 50 g/L significantly increased the number of SA-β-gal positive cells and the level of mitochondrial ROS (all P < 0.01). Therefore, 10 g/L D-gal was used to induce the senescence of MSCs in subsequent experiment. Compared with the control group, the number of SA-β-gal positive cells in Res groups significantly decreased (all P < 0.01), the expression of p53, p16 and γ-H2AX decreased, and the total and mitochondrial ROS level also decreased (all P < 0.01). Moreover, mitochondrial membrane potential, open level of mitochondrial membrane channels and the levels of cytoplasm Cyt-C in the Res treatment groups decreased compared with the control group (P < 0.05 or P < 0.01). Conclusion: Resveratrol can protect the mitochondrial function of MSCs, and effectively delay the MSC senescence.



Key wordsResveratrol      Bone marrow cells      Mesenchymal stem cells      Mitochondria      Aging      Cells, cultured     
Received: 30 January 2019      Published: 19 January 2020
CLC:  R329.2+4  
Corresponding Authors: PAN Jianping     E-mail: zhangdy@zucc.edu.cn;jppan@zucc.edu.cn
Cite this article:

ZHANG Dayong,LIN Jiuzhou,WANG Yayan,XU Shan,LUO Chengzhuan,CAI Jiaye,JIANG Xuefan,PAN Jianping. Effects of resveratrol on aging of mesenchymal stem cells and its mechanism. J Zhejiang Univ (Med Sci), 2019, 48(6): 617-624.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2019.12.05     OR     http://www.zjujournals.com/med/Y2019/V48/I6/617


白藜芦醇通过保护线粒体功能延缓骨髓间充质干细胞衰老

目的: 探讨白藜芦醇对骨髓间充质干细胞(MSC)衰老的影响及其机制。方法: 分离SD乳鼠(7日龄)MSC,传代培养至第3代后检测0、1、10、50 g/L D-半乳糖对MSC衰老的影响,确定D-半乳糖诱导MSC衰老的最佳浓度。再将细胞随机分为10、50、100 μmol/L白藜芦醇组及对照组。衰老相关β-半乳糖苷酶(SA-β-gal)染色观察各组细胞衰老变化;DCFH-DA染色检测总活性氧水平;MitoSOX Red染色检测线粒体活性氧水平;线粒体膜电位检测试剂盒(JC-1法)检测线粒体膜电位变化;纯化线粒体膜通道孔(mPTP)比色法检测线粒体膜通道开放水平;蛋白质印迹法检测衰老相关蛋白p53、p16、γ-H2AX表达和细胞质内线粒体细胞色素C外泄水平。结果: 10、50 g/L D-半乳糖可明显增加SA-β-gal染色阳性MSC数量和线粒体活性氧水平(均P < 0.01)。与对照组比较,白藜芦醇组SA-β-gal染色阳性细胞数减少(均P < 0.01),p53、p16和γ-H2AX表达减少,细胞内总活性氧和线粒体活性氧水平下降(均P < 0.01),线粒体膜电位下降(P < 0.05或P < 0.01),膜通道开放水平降低(P < 0.05或P < 0.01),细胞质内细胞色素C外泄减少。结论: 白藜芦醇可保护MSC线粒体功能,延缓MSC衰老。


关键词: 白藜芦醇,  骨髓细胞,  间质干细胞,  线粒体,  衰老,  细胞, 培养的 
Fig 1 Effects of different concentrations of D-gal on MSC senescence
Fig 2 Effects of concentrations and treatment time of resveratrol on MSC senescence (senescence-associated-β-galactosidase staining)
Fig 3 Expression of senescence-related protein p53, p16 and γ-H2AX in MSCs treated by resveratrol of different concentrations
Fig 4 Effect of resveratrol on total and mitochondrial reactive oxygen species levels in MSCs
Fig 5 Changes of mitochondrial membrane potential in MSCs treated by resveratrol of different concentrations (n=5)
Fig 6 Changes of the open level of mitochondrial membrane channels in MSCs treated by resveratrol of different concentrations (n=5)
Fig 7 Changes in mitochondrial cyt C excretion level in MSCs treated by resveratrol of different concentrations
[1]   CHANDEL N S , JASPER H , HO T T et al. Metabolic regulation of stem cell function in tissue homeostasis and organismal aging[J]. Nat Cell Biol, 2016, 18 (8): 823- 832
doi: 10.1038/ncb3385
[2]   BITTENCOURT M K , BARROS M A , MARTINS J F et al. Allogeneic mesenchymal stem cell transplantation in dogs with keratoconjunctivitis sicca[J]. Cell Med, 2016, 8 (3): 63- 77
[3]   SEPúLVEDA J C , TOMé M , FERNáNDEZ M E et al. Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model[J]. Stem Cells, 2014, 32 (7): 1865- 1877
doi: 10.1002/stem.1654
[4]   ZHANG D Y, WANG H J, TAN Y Z. Wnt/beta-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway[J/OL]. PLoS One, 2011, 6(6): e21397.
[5]   SAHIN E , DEPINHO R A . Linking functional decline of telomeres, mitochondria and stem cells during ageing[J]. Nature, 2010, 464 (7288): 520- 528
doi: 10.1038/nature08982
[6]   ZHANG D Y , PAN Y , ZHANG C et al. Wnt/beta-catenin signaling induces the aging of mesenchymal stem cells through promoting the ROS production[J]. Mol Cell Biochem, 2013, 374 (1-2): 13- 20
doi: 10.1007/s11010-012-1498-1
[7]   LIU M , YIN Y , YE X et al. Resveratrol protects against age-associated infertility in mice[J]. Hum Reprod, 2013, 28 (3): 707- 717
doi: 10.1093/humrep/des437
[8]   TOTH P , TARANTINI S , TUCSEK Z et al. Resveratrol treatment rescues neurovascular coupling in aged mice:role of improved cerebromicrovascular endothelial function and downregulation of NADPH oxidase[J]. Am J Physiol Heart Circ Physiol, 2014, 306 (3): H299- H308
doi: 10.1152/ajpheart.00744.2013
[9]   ZHANG D , YAN B , YU S et al. Coenzyme Q10 inhibits the aging of mesenchymal stem cells induced by D-galactose through Akt/mTOR signaling[J]. Oxid Med Cell Longev, 2015, 2015 867293
[10]   颜冰希, 余姗姗, 冯晓 et al. D-半乳糖对大鼠骨髓间充质干细胞衰老的影响[J]. 浙江大学学报(医学版), 2013, 42 (6): 625- 631
YAN Bingxi , YU Shanshan , FENG Xiao et al. Effects of D-galactose on ageing of rat mesenchymal stem cells[J]. Journal of Zhejiang University (Medical Sciences), 2013, 42 (6): 625- 631
doi: 10.3785/j.issn.1008-9292.2013.06.006
[11]   SCHULTZ M B , SINCLAIR D A . When stem cells grow old:phenotypes and mechanisms of stem cell aging[J]. Development, 2016, 143 (1): 3- 14
[12]   OH J , LEE Y D , WAGERS A J . Stem cell aging:mechanisms, regulators and therapeutic opportunities[J]. Nat Med, 2014, 20 (8): 870- 880
doi: 10.1038/nm.3651
[13]   NAVARRO-CRUZ A R , RAMíREZ Y AYALA R , OCHOA-VELASCO C et al. Effect of chronic administration of resveratrol on cognitive performance during aging process in rats[J]. Oxid Med Cell Longev, 2017, 2017 8510761
[14]   KIM E N , KIM M Y , LIM J H et al. The protective effect of resveratrol on vascular aging by modulation of the renin-angiotensin system[J]. Atherosclerosis, 2018, 270 123- 131
doi: 10.1016/j.atherosclerosis.2018.01.043
[15]   LIANG Q X , LIN Y H , ZHANG C H et al. Resveratrol increases resistance of mouse oocytes to postovulatory aging in vivo[J]. Aging (Albany NY), 2018, 10 (7): 1586- 1596
[16]   STEFANI M , MARKUS M A , LIN R C et al. The effect of resveratrol on a cell model of human aging[J]. Ann N Y Acad Sci, 2007, 1114 407- 418
doi: 10.1196/annals.1396.001
[1] XU Meijiao, WANG Yifeng. Stilbene glucoside inhibits ultraviolet radiation B-induced photoaging in human skin fibroblasts[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 625-630.
[2] HU Linlin, ZHANG Ruiting, WANG Shuyue, HONG Hui, HUANG Peiyu, ZHANG Minming. Correlation of cardiovascular risk factors with brain iron deposition: A magnetic resonance imaging study[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 644-650.
[3] GUO Danling,HU Hongjie,ZHAO Zhenhua,LYU Sangying,HUANG Yanan,JIANG Ruhong,PU Cailing,NI Hongxia. Value of myocardial scar in predicting malignant ventricular arrhythmia in patients with chronic myocardial infarction[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 511-516.
[4] ZHANG Dandan,WANG Junmei. Prenatal diagnosis and management of fetal hepatic hemangioma[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 439-445.
[5] WANG Yayun,CHEN Yuan,YANG Mengmeng,XI Fangfang,ZHAN Qitao,JIANG Ying,ZHAO Baihui,LUO Qiong. Prognosis of fetuses with cystichygroma and nuchal translucency/nuchal fold thickening on prenatal echography[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 434-438.
[6] ZHANG Ziwei,WANG Junmei. Ultrasound diagnosis of left inferior vena cava and double inferior vena cava in fetus[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 446-452.
[7] TANG Xianpeng,TAO Ruoling,ZHANG Xinghao,JIN Qiuzi,HE Wei. Assessment of fetal superior mesenteric artery and vein by three-dimensional power Doppler sonography[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 453-458.
[8] ZHANG Congcong, LOU Min, CHEN Zhicai, CHEN Hongfang, XU Dongjuan, WANG Zhimin, HU Haifang, WU Chenglong, ZHANG Xiaoling, MA Xiaodong, WANG Yaxian, HU Haitao, Improving In-hospital Stroke Service Utilisation (MISSION) in Zhejiang Province . Analysis of intravenous thrombolysis time and prognosis in patients with in-hospital stroke[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 260-266.
[9] XU A'qiao,HE Hongqin,SHI Qiujun,LI Zhiqing,ZHANG Shengjian. Digital breast tomosynthesis in diagnosis of dense breast lesions[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 186-192.
[10] ZHANG Xinmei,XU Ping. Stratified treatment and management of adenomyosis[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 123-129.
[11] FU Jianlan,SONG Fahuan,CHENG Aiping. PET/CT imaging manifestations of different pathological subtypes of liposarcoma[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 193-199.
[12] XIAO Li,TONG Xiaoyong. Advances in molecular mechanism of vascular remodeling in pulmonary arterial hypertension[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 102-110.
[13] ZHAO Shihao,ZHANG Xue,KE Yuehai. Progress on correlation between cell senescence and idiopathic pulmonary fibrosis[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 111-115.
[14] SHAO Ying,WANG Jiadan,ZHU Danyan. Rictor regulates mitochondrial calcium signaling in mouse embryo stem cell-derived cardiomyocytes[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 65-74.
[15] SHAO Hua,LIU Fei,ZHANG Wei,WANG Lixin,CHEN Bin,JIANG Junhao,DONG Zhihui,SHI Yun,GUO Daqiao,FU Weiguo. Clinical features and surgical treatment of neurilemmoma versus carotid body tumors at bifurcation of carotid artery[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 583-587.