Please wait a minute...
J Zhejiang Univ (Med Sci)  2019, Vol. 48 Issue (6): 603-608    DOI: 10.3785/j.issn.1008-9292.2019.12.03
Effects of acute hypoxia on expression of pregnane X receptor in liver tissues of rats exposed to high altitude
YUAN Xuechun1,2(),XIANG Dawei2,MIN Qiong3,DING Yidan1,2,ZHAO Anpeng2,WANG Rong1,2,*()
1. College of Pharmacy, Lanzhou University, Lanzhou 730000, China
2. Key Laboratory of the Plateau Medicine, The 940 th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
3. Pharmacy Department, Gansu Provincial Cancer Hospital, Lanzhou 730050, China
Download: HTML( 14 )   PDF(2858KB)
Export: BibTeX | EndNote (RIS)      


Objective: To investigate the effects of high-altitude hypoxic environment on the expression of pregnane X receptor (PXR) in rat liver and related mechanism. Methods: Wistar rats were randomly divided into five groups with 8 rats in each group, the rats were exposed to high-plateau hypoxia for 0 (control group), 12, 24, 36 and 48 h, respectively. Abdominal aortic blood samples were collected for blood gas analysis. HE staining was used to observe the pathological changes of liver tissue. The expression levels of PXR mRNA in liver tissues were determined by RT-PCR. Western blot analysis was performed to determine the protein expression of PXR and protease SUG1 in liver tissues of rats. Results: Compared with the control group, the blood pH of the rats decreased after 12 h of acute hypoxia. After 24 h exposed to hypoxia, SaO2 was lower than 80%, PaO2 was lower than 60 mmHg (1 mmHg=0.133 kPa); and PaCO2 increased after 48 h exposed to hypoxia (P < 0.05). There was obvious edema in the central vein of the liver tissue at 12 h and 24 h after exposure to hypoxia. The liver tissue of the rats exposed to hypoxia for 36 h and 48 h showed inflammatory infiltration. The expression of PXR mRNA was significantly decreased by 63%, 96%, 86%, and 85%at 12, 24, 36 h, and 48 h after exposure to hypoxia (all P < 0.05), respectively. The protein expression of PXR was significantly up-regulated by 93%and 99%after 36 h and 48 h exposure to hypoxia (all P < 0.05), respectively. The protein expression of proteinase SUG1 decreased by 14%, 34%and 46%after 24, 36 and 48 h after hypoxia (all P < 0.01). Conclusion: Acute hypoxia at high altitude can affect the expression of nuclear receptor PXR in rat liver, and protease SUG1 may be a regulatory factor for PXR expression in hypoxia.

Key wordsAltitude      Acute disease      Hypoxia/physiopathology      Adaptation, physiological      Receptors, cytoplasmic and nuclear/physiology      Liver      Rats, Wistar     
Received: 24 July 2019      Published: 19 January 2020
CLC:  R594.3  
Corresponding Authors: WANG Rong     E-mail:;
Cite this article:

YUAN Xuechun,XIANG Dawei,MIN Qiong,DING Yidan,ZHAO Anpeng,WANG Rong. Effects of acute hypoxia on expression of pregnane X receptor in liver tissues of rats exposed to high altitude. J Zhejiang Univ (Med Sci), 2019, 48(6): 603-608.

URL:     OR


目的: 研究急进高原缺氧环境对大鼠肝脏孕烷X受体(PXR)表达的影响及相关机制。方法: Wistar雄性大鼠40只,随机分为对照组和急进高原缺氧12、24、36、48 h组,每组8只。待预定缺氧时间完成,采集各组大鼠腹主动脉血,全自动血气分析仪进行血气分析;HE染色观察肝组织病理变化状况;实时定量PCR测定各组大鼠肝组织中PXR mRNA水平;蛋白质印迹法测定各组大鼠肝组织中PXR和蛋白酶SUG1的表达。结果: 与对照组比较,急进高原缺氧12 h后大鼠血液酸碱度值降低;缺氧24 h后动脉血氧饱和度(SaO2)低于80%,动脉氧分压(PaO2)低于60 mmHg(1 mmHg=0.133 kPa);缺氧48 h后动脉二氧化碳分压(PaCO2)增加(P < 0.05)。对照组大鼠肝组织结构完整,急进高原缺氧12、24 h组肝组织中央静脉有明显水肿,缺氧36、48 h组大鼠肝组织见炎性浸润。大鼠肝脏内PXR mRNA表达从急进高原缺氧12 h时即显著下调,缺氧12、24、36、48 h组分别降低了63%、96%、86%、85%(均P < 0.05);其蛋白表达从缺氧36 h后显著上调,缺氧36、48 h后分别上调93%、99%(均P < 0.05)。蛋白酶SUG1的表达从缺氧24 h开始降低,缺氧24、36、48 h后分别下降14%、34%、46%(均P < 0.01)。结论: 急进高原缺氧可对大鼠肝脏中核受体PXR表达产生影响,蛋白酶SUG1可能是影响急进高原缺氧下PXR表达的调控因素。

关键词: 高海拔,  急性病,  低氧/病理生理学,  适应, 生理学,  受体, 胞质和核/生理学,  肝,  大鼠, Wistar 
组别 n 酸碱度值 SaO2(%) PaO2(mmHg) PaCO2(mmHg)
与对照组比较,*P < 0.05.SaO2:动脉血氧饱和度;PaO2:动脉氧分压;PaCO2:动脉二氧化碳分压.1 mmHg=0.133 kPa.
对照组 8 7.43±0.03 91.28±1.67 60.29±4.83 25.32±3.55
缺氧12 h组 8 7.29±0.10* 84.70±8.91* 61.13±7.95 24.17±2.96
缺氧24 h组 8 7.41±0.04 73.57±8.48* 56.60±4.83 25.75±1.51
缺氧36 h组 8 7.32±0.12* 67.45±5.22* 55.27±5.48 24.28±2.41
缺氧48 h组 8 7.37±0.10 69.43±13.90* 52.43±10.72* 28.49±3.84*
Tab 1 Blood gas analysis of hypoxia rats and healthy controls  (${\bar x}$±s)
Fig 1 HE staining of rat livers in different groups
Fig 2 mRNA expression of PXR in liver tissues of hypoxia rats and controls (n=8)
Fig 3 The protein expression of PXR and SUG1 in liver tissues of hypoxia rats and controls (n=8)
[1]   BAHRKE M S , SHUKITT-HALE B . Effects of altitude on mood, behaviour and cognitive functioning. A review[J]. Sports Med, 1993, 16 (2): 97- 125
doi: 10.2165/00007256-199316020-00003
[2]   BASNYAT B , HOFMEYR R , TOLKEN G et al. Acute high-altitude illness[J]. S Afr Med J, 2017, 107 (7): 556- 561
doi: 10.7196/SAMJ.2017.v107i7.12612
[3]   李向阳, 刘永年, 袁明 et al. 高原低氧对药物代谢酶CYP2C9和2C19活性及蛋白表达的影响[J]. 药学学报, 2012, 47 (2): 188- 193
LI Xiangyang , LIU Yongnian , YUAN Ming et al. Effect of high altitude hypoxia on the activity and protein expression of CYP2C9 and CYP2C19[J]. Acta Pharmaceutica Sinica, 2012, 47 (2): 188- 193
[4]   TIEN E S , NEGISHI M . Nuclear receptors CAR and PXR in the regulation of hepatic metabolism[J]. Xenobiotica, 2006, 36 (10-11): 1152- 1163
doi: 10.1080/00498250600861827
[5]   HARMSEN S , MEIJERMAN I , BEIJNEN J H et al. The role of nuclear receptors in pharmacokinetic drug-drug interactions in oncology[J]. Cancer Treat Rev, 2007, 33 (4): 369- 380
doi: 10.1016/j.ctrv.2007.02.003
[6]   SMUTNY T , MANI S , PAVEK P . Post-translational and post-transcriptional modifications of pregnane X receptor (PXR) in regulation of the cytochrome P450 superfamily[J]. Curr Drug Metab, 2013, 14 (10): 1059- 1069
doi: 10.2174/1389200214666131211153307
[7]   MASUYAMA H , INOSHITA H , HIRAMATSU Y et al. Ligands have various potential effects on the degradation of pregnane X receptor by proteasome[J]. Endocrinology, 2002, 143 (1): 55- 61
[8]   荣黎, 曾维政, 吴晓玲 . 高原缺氧与肝脏损伤[J]. 世界华人消化杂志, 2009, 17 (21): 2171- 2178
RONG Li , ZENG Weizheng , WU Xiaoling . High-altitude hypoxia and liver injury[J]. World Chinese Journal of Digestology, 2009, 17 (21): 2171- 2178
doi: 10.3969/j.issn.1009-3079.2009.21.010
[9]   TOLSON A H , WANG H . Regulation of drug-metabolizing enzymes by xenobiotic receptors:PXR and CAR[J]. Adv Drug Deliv Rev, 2010, 62 (13): 1238- 1249
doi: 10.1016/j.addr.2010.08.006
[10]   LEGENDRE C , HORI T , LOYER P et al. Drug-metabolising enzymes are down-regulated by hypoxia in differentiated human hepatoma HepaRG cells:HIF-1alpha involvement in CYP3A4 repression[J]. Eur J Cancer, 2009, 45 (16): 2882- 2892
doi: 10.1016/j.ejca.2009.07.010
[1] LI Xue, LI Wenbin, FENG Shilan, WANG Rong. Research progress on mechanism in adaptation of hemoglobin to plateau hypoxia[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 674-681.
[2] ZHANG Sheng,HU Zhenjie,YE Lu,ZHENG Yaru. Application of Logistic regression and decision tree analysis in prediction of acute myocardial infarction events[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 594-602.
[3] DING Yidan, LI Wenbin, WANG Rong, ZHANG Jianchun. Research progress on the effects of plateau hypoxia on blood-brain barrier structure and drug permeability[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 668-673.
[4] ZHANG Dandan,WANG Junmei. Prenatal diagnosis and management of fetal hepatic hemangioma[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 439-445.
[5] YU Zuanbiao,LIN Zuodong,LANG Dehai. Long-term efficacy of percutaneous mechanical thrombectomy combined with stent implantation in treatment of acute iliofemoral venous thrombosis[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 623-627.
[6] YIN Xiaoliang,LANG Dehai,WANG Di. Comparison of mechanical thrombectomy with transcatheter thrombolysis for acute iliac femoral venous thrombosis[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 588-594.
[7] WANG Xiaoling,OUYANG Xumei,SUN Xiaoyi. Application of mesenchymal stem cells in antineoplastic drugs delivery for tumor-targeted therapy[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 525-533.
[8] WANG Qingsong, ZHANG Sheng, ZHANG Meixia, CHEN Zhicai, LOU Min. Collateral score based on CT perfusion can predict the prognosis of patients with anterior circulation ischemic stroke after thrombectomy[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 377-383.
[9] ZHANG Meixia, ZHOU Ying, ZHANG Ruiting, ZHANG Sheng, LOU Min. Maximal infarct volume to benefit from intravenous thrombolysis and its relation with onset to treatment time[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 384-389.
[10] LIU Yinlan,LUO Yan,YANG Wenjun,SHI Junping,ZHUANG ZhenJie. Effect of diammonium glycyrrhizinate and phospholipids complex oninflammatory gene expression induced by palmitic acid[J]. J Zhejiang Univ (Med Sci), 2017, 46(2): 192-197.
[11] CHEN Gang,ZHANG Ding,YING Yacao,WANG Zhifeng,TAO Wei,ZHU Hao,ZHANG Jingfeng,PENG Zhiyi. Clinical investigation on transarterial chemoembolization with indigenous drug-eluting beads in treatment of unresectable hepatocellular carcinoma[J]. J Zhejiang Univ (Med Sci), 2017, 46(1): 44-51.
[12] LIU Fang, WEI Lin, WANG Shanshan, HUANG Bin. Comparison of FibroTouch and acoustic radiation force impulse in diagnosis of liver fibrosis in patients with chronic hepatitis B[J]. J Zhejiang Univ (Med Sci), 2016, 45(4): 416-421.
[13] LANG Xiabing, YANG Yi, CHEN Jianghua. Epidemiology of acute kidney injury in hospitalized patients in China[J]. J Zhejiang Univ (Med Sci), 2016, 45(2): 208-213.
[14] SHI Junping. Frontiers of research on nonalcoholic fatty liver disease[J]. J Zhejiang Univ (Med Sci), 2016, 45(1): 98-101.
[15] CHEN Qing-meng, XU Lyu-yi, YAN Shen-qiang, ZHANG Xiao-cheng, ZHANG Sheng, LOU Min. Thrombus length evaluated by CT perfusion imaging and its value in prediction of recanalization after intravenous thrombolysis therapy[J]. J Zhejiang Univ (Med Sci), 2015, 44(6): 611-617.