Please wait a minute...
J Zhejiang Univ (Med Sci)  2019, Vol. 48 Issue (2): 148-157    DOI: 10.3785/j.issn.1008-9292.2019.04.05
    
Identification of differentially expressed genes in peripheral blood mononuclear cells of patients with hepatocellular carcinoma and its regulatory network analysis
LUN Yongzhi(),SUN Jie
Department of Laboratory Medicine, School of Pharmacy and Medical Technology, Putian University, Putian 351100, Fujian Province, China
Download: HTML( 15 )   PDF(1276KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To identify the differentially expressed genes (DEGs) in peripheral blood mononuclear cells (PBMC) of patients with hepatocellular carcinoma (HCC) and to analyze their regulatory network. Methods: The DEGs in PBMCs of HCC patients were screened based on GEO database. The functional enrichment analysis and interaction analysis were carried out for DEGs. MCODE algorithm was used to screen core genes of DEGs, and the mirDIP and starBase online tools were used to predict upstream miRNAs and lncRNAs of the core genes. Results: A total of 265 DEGs with a high credibility were identified, which were mainly enriched in the biological activity, such as regulation of cell proliferation, metabolic regulation, cell communication and signaling, and inflammatory diseases according to Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and the two analyses were correlated. Four diagnostic candidate genes were identified, including FUS RNA binding protein, C-X-C motif chemokine ligand 8, cullin 1 and RNA polymerase Ⅱ subunit H. Subsequently, 10 miRNAs, 1 lncRNAs and 38 circRNAs were predicted, and finally a lncRNA/circRNA-miRNA-mRNA-pathway regulatory networks was constructed. Conclusion: The diagnostic candidate genes and its regulatory network in HCC PBMC have been identified based on data mining, which could provide potential tumor biomarkers for early diagnosis and treatment of HCC.



Key wordsCarcinoma, hepatocellular/pathology      Leukocytes, mononuclear/metabolism      MicroRNAs      Genes      Gene expression profiling      Oligonucleotide array sequence analysis      Gene expression regulation, neoplastic      Computer communication networks      Automatic data processing     
Received: 26 February 2019      Published: 24 July 2019
CLC:  R735.7  
Cite this article:

LUN Yongzhi,SUN Jie. Identification of differentially expressed genes in peripheral blood mononuclear cells of patients with hepatocellular carcinoma and its regulatory network analysis. J Zhejiang Univ (Med Sci), 2019, 48(2): 148-157.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2019.04.05     OR     http://www.zjujournals.com/med/Y2019/V48/I2/148


肝细胞癌患者外周血单个核细胞诊断候选基因的筛选及其调控网络分析

目的: 通过筛选肝细胞癌(HCC)患者外周血单个核细胞(PBMC)诊断候选基因并分析其上游互作微小RNA(miRNA)、长链非编码RNA(lncRNA)、环状(circRNA)和参与的通路,探讨HCC发生、发展过程中的调控机制并寻找可用于临床诊疗的分子靶点。方法: 利用GEO数据库筛选HCC患者PBMC中的差异表达基因集,分别进行功能富集及互作分析,继而利用网络模块划分方法寻找差异表达基因中的诊断候选基因,再利用mirDIP、starBase在线工具对诊断候选基因的上游miRNA、lncRNA、circRNA进行预测。结果: 获得高可信度的差异表达基因265个,差异表达基因主要富集于增殖调控、代谢调节、细胞通信、炎症疾病等功能,基因本体及KEGG通路富集结果相互关联。筛选获得4个诊断候选基因,包括RNA结合蛋白FUS、C-X-C基序趋化因子配体8、卡林蛋白和RNA聚合酶Ⅱ亚单位H。预测到10个miRNA、1个lncRNA和38个circRNA符合筛选标准,最后构建出一个lncRNA/circRNA-miRNA-mRNA-通路调控网络。结论: 本研究基于数据挖掘方法筛选获得HCC患者PBMC中的诊断候选基因及其调控网络,为HCC的早期诊断和合理治疗提供了理论依据,有助于寻找新的肿瘤标志物。


关键词: 癌, 肝细胞/病理学,  白细胞, 单核/代谢,  微RNAs,  基因,  基因表达谱,  寡核苷酸序列分析,  基因表达调控, 肿瘤,  计算机通信网络,  自动数据处理 
基因名称 log差异倍数 P 调整后的P
CXCL8 4.628 44 5.79×10-5 9.60×10-4
HBEGF 4.612 83 1.30×10-9 1.27×10-6
GAS2L1 4.472 17 3.33×10-4 3.62×10-3
G0S2 4.317 09 1.27×10-4 1.74×10-3
JUN 4.128 23 2.62×10-7 2.34×10-5
BRE-AS1 3.965 83 1.57×10-7 1.68×10-5
ELF2 3.899 70 1.78×10-8 4.68×10-6
DAO 3.885 54 1.62×10-8 4.42×10-6
PHACTR1 3.838 04 1.13×10-6 6.20×10-5
NR4A2 3.802 09 2.18×10-6 9.65×10-5
HBB -5.193 56 6.29×10-5 1.02×10-3
WBP2 -4.770 88 8.56×10-5 1.28×10-3
HBA2 -4.674 73 2.14×10-7 2.05×10-5
CCNE2 -4.581 23 1.38×10-4 1.85×10-3
ABAT -4.161 59 1.21×10-6 6.50×10-5
CREB5 -3.947 77 1.76×10-7 1.80×10-5
SH3YL1 -3.922 51 8.41×10-7 4.97×10-5
ITGA10 -3.509 37 9.03×10-8 1.18×10-5
KLRD1 -3.437 81 2.94×10-5 5.82×10-4
C8B -3.355 26 2.78×10-8 6.06×10-6
Tab 1 Top 10 differentially expressed genes screened from GEO database
Fig 1 Gene ontology (GO) enrichment analysis results of differentially expressed genes
Fig 2 KEGG pathway enrichment analysis results of differentially expressed genes
Fig 3 Interaction analysis of differentially expressed genes
Fig 4 Interaction diagram of core genes
Fig 5 Venn analysis of core genes, hub genes and bottleneck genes
基因类别 基因名称
加粗显示的为诊断候选基因.
核心基因 GPSM2CCR1FPR2P2RY12LPAR5P2RY13
CXCL5CXCL8POLR2HCRNKL1PPIL1
PRCCTRA2BFUSU2SURPSRSF3KBTBD7
CUL1CISHTULP4FEM1BKEAP1
关键基因 CXCL8JUNPOLR2HCUL1FPR2LPAR5
FUSRHOUVEGFASRSF3GPSM2U2SURP
P2RY13P2RY12RHOHSOS1RHOBCXCL5
PRCCCCR1KEAP1PPIL1CRNKL1TRA2B
瓶颈基因 JUNPOLR2HVEGFAFUSAURKASOS1
CXCL8CUL1
Tab 2 Screening result of diagnostic candidate genes
基因类别 名称
微小RNA hsa-miR-106a-5p、hsa-miR-106b-5p、hsa-miR-141-3p、hsa-miR-17-5p、hsa-miR-200a-3p、hsa-miR-203a-3p、hsa-miR-20a-5p、hsa-miR-20b-5p、hsa-miR-377-3p、hsa-miR-93-5p
长链非编码RNA MALAT1
环状RNA ADAM9ANKFY1ARF1ARPC5ATP5G3BLOC1S3CAPZBCHD4DAB2DUSP1EIF3BEIF3FFABP5FAM168BFLNAFTLGLYR1、hsa_circ_002179、hsa_circ_0044175、IBTKLASP1MYL6MYO1DNAP1L1NCOA6NUP205PANK2PARP6PHF5APRC1RBM34TCONS_l2_00025633TNPO1TRIP10TUBA1ATUBA1CU2SURPZNF706
Tab 3 Analysis of miRNA, lncRNA, circRNA of upstream interaction of diagnostic candidate genes
Fig 6 Regulatory network of lncRNA/circRNA-miRNA-mRNA-pathway
[1]   KULIK L , EL-SERAG H B . Epidemiology and management of hepatocellular carcinoma[J]. Gastroenterology, 2019, 156 (2): 477- 491.e1
doi: 10.1053/j.gastro.2018.08.065
[2]   TORRE L A , BRAY F , SIEGEL R L et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65 (2): 87- 108
doi: 10.3322/caac.21262
[3]   VITALE A , PECK-RADOSAVLJEVIC M , GIANNINIE G et al. Personalized treatment of patients with very early hepatocellular carcinoma[J]. J Hepatol, 2017, 66 (2): 412- 423
doi: 10.1016/j.jhep.2016.09.012
[4]   BERRETTA M , CAVALIERE C , ALESSANDRINI L et al. Serum and tissue markers in hepatocellular carcinoma and cholangiocarcinoma:clinical and prognostic implications[J]. Oncotarget, 2017, 8 (8): 14192- 14220
[5]   SHI M , CHEN M S , SEKAR K et al. A blood-based three-gene signature for the non-invasive detection of early human hepatocellular carcinoma[J]. Eur J Cancer, 2014, 50 (5): 928- 936
doi: 10.1016/j.ejca.2013.11.026
[6]   DAVIS S , MELTZER P S . GEOquery:a bridge between the Gene Expression Omnibus (GEO) and BioConductor[J]. Bioinformatics, 2007, 23 (14): 1846- 1847
doi: 10.1093/bioinformatics/btm254
[7]   TRIPATHI S , POHL M O , ZHOU Y et al. Meta-and orthogonal integration of influenza "omics" data defines a role for ubr4 in virus budding[J]. Cell Host Microbe, 2015, 18 (6): 723- 735
doi: 10.1016/j.chom.2015.11.002
[8]   SZKLARCZYK D , MORRIS J H , COOK H et al. The STRING database in 2017:quality-controlled protein-protein association networks, made broadly accessible[J]. Nucleic Acids Res, 2017, 45 (D1): D362- D368
doi: 10.1093/nar/gkw937
[9]   TOKAR T , PASTRELLO C , AEM R et al. mirDIP 4.1-integrative database of human microRNA target predictions[J]. Nucleic Acids Res, 2018, 46 (D1): D360- D370
doi: 10.1093/nar/gkx1144
[10]   LI J H , LIU S , ZHOU H et al. starBase v2.0:decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data[J]. Nucleic Acids Res, 2014, 42 (Database issue): D92- D97
[11]   SINGAL A G . The efficacy and effectiveness of hepatocellular carcinoma surveillance in patients with cirrhosis[J]. Hepat Oncol, 2015, 2 (2): 97- 99
doi: 10.2217/hep.14.38
[12]   CHAUHAN R , LAHIRI N . Tissue-and serum-associated biomarkers of hepatocellular carcinoma[J]. Biomark Cancer, 2016, 8 (Suppl 1): 37- 55
[13]   SINGH A K , KUMAR R , PANDEY A K . Hepatocellular carcinoma:causes, mechanism of progression and biomarkers[J]. Curr Chem Genom Transl Med, 2018, 12 9- 26
doi: 10.2174/2213988501812010009
[14]   刘琼, 顾浩, 刘骏 et al. 基于熵值的尿路感染疾病基因网络的模块划分与生物学机制分析[J]. 基因组学与应用生物学, 2018, 37 (10): 4676- 4681
LIU Qiong , GU Hao , LIU Jun et al. Module partition and biological mechanism analysis of genetic network of urinary tract infection based on entropy[J]. Genomics and Applied Biology, 2018, 37 (10): 4676- 4681
[15]   KLUNGBOONKRONG V , DAS D , MCLENNAN G . Molecular mechanisms and targets of therapy for hepatocellular carcinoma[J]. J Vasc Interv Radiol, 2017, 28 (7): 949- 955
doi: 10.1016/j.jvir.2017.03.002
[16]   MICHALOPOULOS G K . Liver regeneration after partial hepatectomy:critical analysis of mechanistic dilemmas[J]. Am J Pathol, 2010, 176 (1): 2- 13
doi: 10.2353/ajpath.2010.090675
[17]   PARADIS V , YOUSSEF N , DARGèRE D et al. Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas[J]. Hum Pathol, 2001, 32 (3): 327- 332
doi: 10.1053/hupa.2001.22747
[18]   SHARMA A K , KUMAR S , CHASHOO G et al. Cell cycle inhibitory activity of Piper longum against A549 cell line and its protective effect against metal-induced toxicity in rats[J]. Indian J Biochem Biophys, 2014, 51 (5): 358- 364
[19]   EGUCHI A , WREE A , FELDSTEIN A E . Biomarkers of liver cell death[J]. J Hepatol, 2014, 60 (5): 1063- 1074
doi: 10.1016/j.jhep.2013.12.026
[20]   FABREGAT I . Dysregulation of apoptosis in hepatocellular carcinoma cells[J]. World J Gastroenterol, 2009, 15 (5): 513- 520
doi: 10.3748/wjg.15.513
[21]   CAZANAVE S C , MOTT J L , ELMI N A et al. JNK1-dependent PUMA expression contributes to hepatocyte lipoapoptosis[J]. J Biol Chem, 2009, 284 (39): 26591- 26602
doi: 10.1074/jbc.M109.022491
[22]   YANG Y , LIU Q , LU J et al. Exosomes from Plasmodium-infected hosts inhibit tumor angiogenesis in a murine Lewis lung cancer model[J]. Oncogenesis, 2017, 6 (6): e351
doi: 10.1038/oncsis.2017.52
[23]   BAO L , YUAN L , LI P et al. A FUS-LATS1/2 axis inhibits hepatocellular carcinoma progression via activating hippo pathway[J]. Cell Physiol Biochem, 2018, 50 (2): 437- 451
doi: 10.1159/000494155
[24]   LIU Q, ZHOU Y, TANG R, et al. Increasing the unneddylated cullin1 portion rescues the csn phenotypes by stabilizing adaptor modules to drive SCF assembly[J/OL]. Mol Cell Biol, 2017, 37(23): e00109-17.
[25]   LI Y , WU J , ZHANG P . CCL15/CCR1 axis is involved in hepatocellular carcinoma cells migration and invasion[J]. Tumour Biol, 2016, 37 (4): 4501- 4507
doi: 10.1007/s13277-015-4287-0
[26]   AWAN F M , NAZ A , OBAID A et al. MicroRNA pharmacogenomics based integrated model of miR-17-92 cluster in sorafenib resistant HCC cells reveals a strategy to forestall drug resistance[J]. Sci Rep, 2017, 7 (1): 11448
doi: 10.1038/s41598-017-11943-1
[27]   BAO L , YUAN L , LI P et al. A FUS-LATS1/2 Axis Inhibits Hepatocellular Carcinoma Progression via Activating Hippo Pathway[J]. Cell Physiol Biochem, 2018, 50 (2): 437- 451
doi: 10.1159/000494155
[1] YANG Kun,HU Xiaosheng. Research progress on miR-21 in heart diseases[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 214-218.
[2] HONG Pingping,GUO Bingjie,LIN Li,LIN Xihua,ZHOU Jiaqiang. A novel mutation W257R in GCK gene discovered from a Chinese patient with maturity onset diabetes of the young[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 200-203.
[3] DU Dongfen,ZHU Lixia,WANG Yungui,YE XiujinG. Expression of WT1 gene and its prognostic value in patients with acute myeloid leukemia[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 50-57.
[4] XIAO Li,TONG Xiaoyong. Advances in molecular mechanism of vascular remodeling in pulmonary arterial hypertension[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 102-110.
[5] YIN Li,LI Ge,SHEN Jian,LIU Zhenjie. Screening for inherited thrombophilia and genome sequencing[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 606-611.
[6] LIN Ying,YAO Yingjia,LIANG Xicai,SHI Yue,KONG Liang,XIAO Honghe,WU Yutong,NI Yingnan,YANG Jingxian. Osthole suppresses amyloid precursor protein expression by up-regulating miRNA-101a-3p in Alzheimer's disease cell model[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 473-479.
[7] CHEN Zhiqiang,MI Xianjun,CHEN Ang,DUAN Lifeng,DAI Xinzhen,DENG Wentong. Paraffin section thickness in immunohistochemical detection of p16 expression in cervical tissue samples[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 362-366.
[8] TIAN Guangfeng,GAO Hui,HU Shasha,SHU Qiang. Research progress on genetic and epigenetic mechanisms in congenital heart disease[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 227-238.
[9] GONG Hengpei,LIU Zuwang,CHEN Yanyue,ZHANG Jian,CHENG Rubin,HUANG Zhen. Microscopic and molecular identification of pine needles[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 300-306.
[10] LI Fushan,FANG Ran,RAO Lin,MENG Feilong,ZHAO Xiaoli. Research progress on exosomes in diagnosis and treatment of cardiovascular diseases[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 320-326.
[11] YANG Jingjuan,WU Fengfeng,CHEN Jianghua,YANG Yi. Screening of mitochondrial DNA damage repair genes in rats with septic acute kidney injury[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 41-50.
[12] ZHANG Yi,ZHANG Li,ZHANG Qiyu,HONG Weilong,LIN Xiaohua. microRNA-222 regulates proliferation and apoptosis of fibroblasts in hypertrophic scar via matrix metalloproteinase 1[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 609-617.
[13] SHEN Jie,CHEN Wendong,JI Kaida,GAO Pingjin,ZHU Dingliang. Effect of Arg188Gln (G/A) mutation on enzymatic activity of kynureninase[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 643-648.
[14] WANG Mengyan, ZHU Biao. Research progress on genes mutations related to sulfa drug resistance in Pneumocystis jirovecii[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 563-569.
[15] LOU Zhaohan, FEI Xufeng, YAN Jianbo, JIA Qiaonjuan, HUANG Yijian, WU Jiaping. Geographic spatial pattern of digestive system cancers in Yiwu city[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 537-545.