|
|
Identification of differentially expressed genes in peripheral blood mononuclear cells of patients with hepatocellular carcinoma and its regulatory network analysis |
LUN Yongzhi( ),SUN Jie |
Department of Laboratory Medicine, School of Pharmacy and Medical Technology, Putian University, Putian 351100, Fujian Province, China |
|
|
Abstract Objective: To identify the differentially expressed genes (DEGs) in peripheral blood mononuclear cells (PBMC) of patients with hepatocellular carcinoma (HCC) and to analyze their regulatory network. Methods: The DEGs in PBMCs of HCC patients were screened based on GEO database. The functional enrichment analysis and interaction analysis were carried out for DEGs. MCODE algorithm was used to screen core genes of DEGs, and the mirDIP and starBase online tools were used to predict upstream miRNAs and lncRNAs of the core genes. Results: A total of 265 DEGs with a high credibility were identified, which were mainly enriched in the biological activity, such as regulation of cell proliferation, metabolic regulation, cell communication and signaling, and inflammatory diseases according to Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and the two analyses were correlated. Four diagnostic candidate genes were identified, including FUS RNA binding protein, C-X-C motif chemokine ligand 8, cullin 1 and RNA polymerase Ⅱ subunit H. Subsequently, 10 miRNAs, 1 lncRNAs and 38 circRNAs were predicted, and finally a lncRNA/circRNA-miRNA-mRNA-pathway regulatory networks was constructed. Conclusion: The diagnostic candidate genes and its regulatory network in HCC PBMC have been identified based on data mining, which could provide potential tumor biomarkers for early diagnosis and treatment of HCC.
|
Received: 26 February 2019
Published: 24 July 2019
|
|
肝细胞癌患者外周血单个核细胞诊断候选基因的筛选及其调控网络分析
目的: 通过筛选肝细胞癌(HCC)患者外周血单个核细胞(PBMC)诊断候选基因并分析其上游互作微小RNA(miRNA)、长链非编码RNA(lncRNA)、环状(circRNA)和参与的通路,探讨HCC发生、发展过程中的调控机制并寻找可用于临床诊疗的分子靶点。方法: 利用GEO数据库筛选HCC患者PBMC中的差异表达基因集,分别进行功能富集及互作分析,继而利用网络模块划分方法寻找差异表达基因中的诊断候选基因,再利用mirDIP、starBase在线工具对诊断候选基因的上游miRNA、lncRNA、circRNA进行预测。结果: 获得高可信度的差异表达基因265个,差异表达基因主要富集于增殖调控、代谢调节、细胞通信、炎症疾病等功能,基因本体及KEGG通路富集结果相互关联。筛选获得4个诊断候选基因,包括RNA结合蛋白FUS、C-X-C基序趋化因子配体8、卡林蛋白和RNA聚合酶Ⅱ亚单位H。预测到10个miRNA、1个lncRNA和38个circRNA符合筛选标准,最后构建出一个lncRNA/circRNA-miRNA-mRNA-通路调控网络。结论: 本研究基于数据挖掘方法筛选获得HCC患者PBMC中的诊断候选基因及其调控网络,为HCC的早期诊断和合理治疗提供了理论依据,有助于寻找新的肿瘤标志物。
关键词:
癌, 肝细胞/病理学,
白细胞, 单核/代谢,
微RNAs,
基因,
基因表达谱,
寡核苷酸序列分析,
基因表达调控, 肿瘤,
计算机通信网络,
自动数据处理
|
|
[1] |
KULIK L , EL-SERAG H B . Epidemiology and management of hepatocellular carcinoma[J]. Gastroenterology, 2019, 156 (2): 477- 491.e1
doi: 10.1053/j.gastro.2018.08.065
|
|
|
[2] |
TORRE L A , BRAY F , SIEGEL R L et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65 (2): 87- 108
doi: 10.3322/caac.21262
|
|
|
[3] |
VITALE A , PECK-RADOSAVLJEVIC M , GIANNINIE G et al. Personalized treatment of patients with very early hepatocellular carcinoma[J]. J Hepatol, 2017, 66 (2): 412- 423
doi: 10.1016/j.jhep.2016.09.012
|
|
|
[4] |
BERRETTA M , CAVALIERE C , ALESSANDRINI L et al. Serum and tissue markers in hepatocellular carcinoma and cholangiocarcinoma:clinical and prognostic implications[J]. Oncotarget, 2017, 8 (8): 14192- 14220
|
|
|
[5] |
SHI M , CHEN M S , SEKAR K et al. A blood-based three-gene signature for the non-invasive detection of early human hepatocellular carcinoma[J]. Eur J Cancer, 2014, 50 (5): 928- 936
doi: 10.1016/j.ejca.2013.11.026
|
|
|
[6] |
DAVIS S , MELTZER P S . GEOquery:a bridge between the Gene Expression Omnibus (GEO) and BioConductor[J]. Bioinformatics, 2007, 23 (14): 1846- 1847
doi: 10.1093/bioinformatics/btm254
|
|
|
[7] |
TRIPATHI S , POHL M O , ZHOU Y et al. Meta-and orthogonal integration of influenza "omics" data defines a role for ubr4 in virus budding[J]. Cell Host Microbe, 2015, 18 (6): 723- 735
doi: 10.1016/j.chom.2015.11.002
|
|
|
[8] |
SZKLARCZYK D , MORRIS J H , COOK H et al. The STRING database in 2017:quality-controlled protein-protein association networks, made broadly accessible[J]. Nucleic Acids Res, 2017, 45 (D1): D362- D368
doi: 10.1093/nar/gkw937
|
|
|
[9] |
TOKAR T , PASTRELLO C , AEM R et al. mirDIP 4.1-integrative database of human microRNA target predictions[J]. Nucleic Acids Res, 2018, 46 (D1): D360- D370
doi: 10.1093/nar/gkx1144
|
|
|
[10] |
LI J H , LIU S , ZHOU H et al. starBase v2.0:decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data[J]. Nucleic Acids Res, 2014, 42 (Database issue): D92- D97
|
|
|
[11] |
SINGAL A G . The efficacy and effectiveness of hepatocellular carcinoma surveillance in patients with cirrhosis[J]. Hepat Oncol, 2015, 2 (2): 97- 99
doi: 10.2217/hep.14.38
|
|
|
[12] |
CHAUHAN R , LAHIRI N . Tissue-and serum-associated biomarkers of hepatocellular carcinoma[J]. Biomark Cancer, 2016, 8 (Suppl 1): 37- 55
|
|
|
[13] |
SINGH A K , KUMAR R , PANDEY A K . Hepatocellular carcinoma:causes, mechanism of progression and biomarkers[J]. Curr Chem Genom Transl Med, 2018, 12 9- 26
doi: 10.2174/2213988501812010009
|
|
|
[14] |
刘琼, 顾浩, 刘骏 et al. 基于熵值的尿路感染疾病基因网络的模块划分与生物学机制分析[J]. 基因组学与应用生物学, 2018, 37 (10): 4676- 4681 LIU Qiong , GU Hao , LIU Jun et al. Module partition and biological mechanism analysis of genetic network of urinary tract infection based on entropy[J]. Genomics and Applied Biology, 2018, 37 (10): 4676- 4681
|
|
|
[15] |
KLUNGBOONKRONG V , DAS D , MCLENNAN G . Molecular mechanisms and targets of therapy for hepatocellular carcinoma[J]. J Vasc Interv Radiol, 2017, 28 (7): 949- 955
doi: 10.1016/j.jvir.2017.03.002
|
|
|
[16] |
MICHALOPOULOS G K . Liver regeneration after partial hepatectomy:critical analysis of mechanistic dilemmas[J]. Am J Pathol, 2010, 176 (1): 2- 13
doi: 10.2353/ajpath.2010.090675
|
|
|
[17] |
PARADIS V , YOUSSEF N , DARGèRE D et al. Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas[J]. Hum Pathol, 2001, 32 (3): 327- 332
doi: 10.1053/hupa.2001.22747
|
|
|
[18] |
SHARMA A K , KUMAR S , CHASHOO G et al. Cell cycle inhibitory activity of Piper longum against A549 cell line and its protective effect against metal-induced toxicity in rats[J]. Indian J Biochem Biophys, 2014, 51 (5): 358- 364
|
|
|
[19] |
EGUCHI A , WREE A , FELDSTEIN A E . Biomarkers of liver cell death[J]. J Hepatol, 2014, 60 (5): 1063- 1074
doi: 10.1016/j.jhep.2013.12.026
|
|
|
[20] |
FABREGAT I . Dysregulation of apoptosis in hepatocellular carcinoma cells[J]. World J Gastroenterol, 2009, 15 (5): 513- 520
doi: 10.3748/wjg.15.513
|
|
|
[21] |
CAZANAVE S C , MOTT J L , ELMI N A et al. JNK1-dependent PUMA expression contributes to hepatocyte lipoapoptosis[J]. J Biol Chem, 2009, 284 (39): 26591- 26602
doi: 10.1074/jbc.M109.022491
|
|
|
[22] |
YANG Y , LIU Q , LU J et al. Exosomes from Plasmodium-infected hosts inhibit tumor angiogenesis in a murine Lewis lung cancer model[J]. Oncogenesis, 2017, 6 (6): e351
doi: 10.1038/oncsis.2017.52
|
|
|
[23] |
BAO L , YUAN L , LI P et al. A FUS-LATS1/2 axis inhibits hepatocellular carcinoma progression via activating hippo pathway[J]. Cell Physiol Biochem, 2018, 50 (2): 437- 451
doi: 10.1159/000494155
|
|
|
[24] |
LIU Q, ZHOU Y, TANG R, et al. Increasing the unneddylated cullin1 portion rescues the csn phenotypes by stabilizing adaptor modules to drive SCF assembly[J/OL]. Mol Cell Biol, 2017, 37(23): e00109-17.
|
|
|
[25] |
LI Y , WU J , ZHANG P . CCL15/CCR1 axis is involved in hepatocellular carcinoma cells migration and invasion[J]. Tumour Biol, 2016, 37 (4): 4501- 4507
doi: 10.1007/s13277-015-4287-0
|
|
|
[26] |
AWAN F M , NAZ A , OBAID A et al. MicroRNA pharmacogenomics based integrated model of miR-17-92 cluster in sorafenib resistant HCC cells reveals a strategy to forestall drug resistance[J]. Sci Rep, 2017, 7 (1): 11448
doi: 10.1038/s41598-017-11943-1
|
|
|
[27] |
BAO L , YUAN L , LI P et al. A FUS-LATS1/2 Axis Inhibits Hepatocellular Carcinoma Progression via Activating Hippo Pathway[J]. Cell Physiol Biochem, 2018, 50 (2): 437- 451
doi: 10.1159/000494155
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|