Please wait a minute...
J Zhejiang Univ (Med Sci)  2019, Vol. 48 Issue (1): 12-18    DOI: 10.3785/j.issn.1008-9292.2019.02.03
    
I1363T mutation induces the defects in fast inactivation of human skeletal muscle voltage-gated sodium channel
TANG Siyang1(),YE Jia1,LI Yuezhou1,2()
1.Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China
2.Department of Laboratory, the Childrens Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
Download: HTML( 23 )   PDF(1055KB)
Export: BibTeX | EndNote (RIS)      

Abstract   Objective

To investigate the mechanism of congenital paramyotonia caused by human skeletal muscle voltage-gated sodium channel hNav1.4 mutant I1363T.

Methods

The conservation of the mutant site were detecled by using amino acid sequence alignment; the C-terminal mCherry fusion hNav1.4 was constructed, and the expression and distribution of wild type and hNav1.4 mutant I1363T were determined by confocal microscopy; the steady-state activation, fast inactivation and window current of wild type and hNav1.4 mutant I1363T were examined by whole-cell patch clamp.

Results

Alignment of the amino acid sequences revealed that Ile1363 is highly conserved in human sodium channels. There was no significant difference in expression level and distribution between wild type and I1363T. Although no significant differences were observed between I1363T mutant and wild type in the activation upon channel gating, the V0.5 of voltage-dependence of fast inactivation of I1363T mutant [(-59.01±0.26) mV] shifted 9 mV towards depolarization as compared with wild type [(-68.03±0.34) mV], and the slope factor of voltage-dependence curve increased to (5.24±0.23) mV, compared with (4.55±0.21) mV of the wild type. Moreover, I1363T showed the larger window current than that of the wild type.

Conclusions

I1363T causes the defect in fast inactivation of hNav1.4, which may increase the excitability of muscle cells and be responsible for myotonia. The increased window current of I1363T may result in an increase of inward Na+ current, could subsequently inactivate the channels and lead to loss of excitability and paralysis.



Key wordsMuscle, skeletal/physiopathology      Myotonia congenita/genetics      Gene expression      Voltage-gated sodium channels/genetics      Mutation      Transfection     
Received: 21 August 2018      Published: 10 May 2019
CLC:  Q71  
Corresponding Authors: LI Yuezhou     E-mail: 21218314@zju.edu.cn;yuezhou-li@zju.edu.cn
Cite this article:

TANG Siyang,YE Jia,LI Yuezhou. I1363T mutation induces the defects in fast inactivation of human skeletal muscle voltage-gated sodium channel. J Zhejiang Univ (Med Sci), 2019, 48(1): 12-18.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2019.02.03     OR     http://www.zjujournals.com/med/Y2019/V48/I1/12


I1363T突变致人骨骼肌电压门控钠通道快失活受损的机制

目的

探究人源骨骼肌电压门控钠通道hNav1.4 I1363T突变体导致患者出现先天性副肌强直症状的机制。

方法

利用氨基酸序列比对,检测hNav1.4 I1363位点的保守性;将hNav1.4蛋白的羧基端融合荧光蛋白mCherry,利用共聚焦显微镜观察hNav1.4野生型与I1363T突变体蛋白的表达量与分布情况;通过全细胞电生理技术记录野生型与I1363T突变体的稳态激活及快失活参数,并进一步分析野生型与I1363T突变体的窗电流。

结果

hNav1.4 I1363位点在各类钠通道中高度保守。野生型与I1363T突变体均能正常上膜,且表达量无明显差异。野生型与I1363T突变体的50%激活电压V0.5 分别为(-29.08±0.24)mV和(-28.79±0.21)mV,斜率因子k分别为5.06±0.21和4.73±0.18(均P>0.05);野生型与I1363T突变体的50%失活电压V0.5 分别为(-68.03±0.34)mV和(-59.01±0.26)mV,斜率因子k分别为4.55±0.21和5.24±0.23(均P<0.05),I1363T突变体的失活电压向去极化方向移动,且更为平缓。I1363T突变体形成的窗电流大于野生型的窗电流。

结论

I1363T突变会导致hNav1.4慢失活受损,增加肌肉细胞兴奋性,导致肌强直的发生;而增大的窗电流使得钠离子在细胞内缓慢聚集,最终导致细胞兴奋性下降,引发肌无力。


关键词: 骨骼肌/病理生理学,  先天性肌强直/遗传学,  基因表达,  电压门控钠通道/遗传学,  突变,  转染 
Figure 1 Sequence analysis of I1363T mutantion
Figure 2 The expression and location of hNav1.4-mCherry in HEK293 cell
Figure 3 The voltage-dependence of I1363T mutation
Figure 4 Window current of I1363T mutation
[1]   PTACEK L J , GOUW L , KWIECI?SKI H , et al . Sodium channel mutations in paramyotonia congenita and hyperkalemic periodic paralysis[J]. Ann Neurol,1993,33(3):300-307.
[2]   LEHMANN-HORN F , RüDEL R , RICKER K . Membrane defects in paramyotonia congenita (Eulenburg)[J]. Muscle Nerve,1987,10(7):633-641.
[3]   CHAHINE M , GEORGE A L , ZHOU M , et al . Sodium channel mutations in paramyotonia congenita uncouple inactivation from activation[J]. Neuron,1994,12(2):281-294.
[4]   PTáCEK L J , GEORGE A L , BARCHI R L , et al . Mutations in an S4 segment of the adult skeletal muscle sodium channel cause paramyotonia congenita[J]. Neuron,1992,8(5):891-897.
[5]   HOFFMAN E P , LEHMANN-HORN F , RüDEL R . Overexcited or inactive: ion channels in muscle disease[J]. Cell,1995,80(5):681-686.
[6]   WOOD J N , BAKER M . Voltage-gated sodium channels[J]. Curr Opin Pharmacol,2001,1(1):17-21.
[7]   CATTERALL W A . Cellular and molecular biology of voltage-gated sodium channels[J]. Physiol Rev,1992,72(4 Suppl):S15-S48.
[8]   CATTERALL W A . From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels[J]. Neuron,2000,26(1):13-25.
[9]   MARBAN E , YAMAGISHI T , TOMASELLI G F . Structure and function of voltage-gated sodium channels[J]. J Physiol,1998,508( Pt 3):647-657.
[10]   MILLER T M , DIAS D S M R , MILLER H A , et al . Correlating phenotype and genotype in the periodic paralyses[J]. Neurology,2004,63(9):1647-1655.
[11]   EGRI C , RUBEN P C . A hot topic: temperature sensitive sodium channelopathies[J]. Channels(Austin),2012,6(2):75-85.
[12]   SUGIURA Y , AOKI T , SUGIYAMA Y , et al . Temperature-sensitive sodium channelopathy with heat-induced myotonia and cold-induced paralysis[J]. Neurology,2000,54(11):2179-2181.
[13]   WAGNER S , LERCHE H , MITROVIC N , et al . A novel sodium channel mutation causing a hyperkalemic paralytic and paramyotonic syndrome with variable clinical expressivity[J]. Neurology,1997,49(4):1018-1025.
[14]   CUMMINS T R , ZHOU J , SIGWORTH F J , et al . Functional consequences of a Na+ channel mutation causing hyperkalemic periodic paralysis[J]. Neuron,1993,10(4):667-678.
[15]   O’LEARY M E , CHEN L Q , KALLEN R G , et al . A molecular link between activation and inactivation of sodium channels[J]. J Gen Physiol,1995,106(4):641-658.
[16]   BENDAHHOU S , CUMMINS T R , KULA R W , et al . Impairment of slow inactivation as a common mechanism for periodic paralysis in DIIS4-S5[J]. Neurology,2002,58(8):1266-1272.
[17]   WEBB J , CANNON S C . Cold-induced defects of sodium channel gating in atypical periodic paralysis plus myotonia[J]. Neurology,2008,70(10):755-761.
[18]   BOUHOURS M , STERNBERG D , DAVOINE C S , et al . Functional characterization and cold sensitivity of T1313A, a new mutation of the skeletal muscle sodium channel causing paramyotonia congenita in humans[J]. J Physiol,2004,554(Pt 3):635-647.
[19]   DICE M S , ABBRUZZESE J L , WHEELER J T , et al . Temperature-sensitive defects in paramyotonia congenita mutants R1448C and T1313M[J]. Muscle Nerve,2004,30(3):277-288.
[20]   SIMKIN D , BENDAHHOU S . Skeletal muscle na channel disorders[J]. Front Pharmacol,2011,2:63.
[21]   MOHAMMADI B , MITROVIC N , LEHMANN-HORN F , et al . Mechanisms of cold sensitivity of paramyotonia congenita mutation R1448H and overlap syndrome mutation M1360V[J]. J Physiol,2003,547(Pt 3):691-698.
[22]   JURKAT-ROTT K , HOLZHERR B , FAULER M , et al . Sodium channelopathies of skeletal muscle result from gain or loss of function[J]. Pflugers Arch,2010,460(2):239-248.
[23]   KE Q , YE J , TANG S , et al . N1366S mutation of human skeletal muscle sodium channel causes paramyotonia congenita[J]. J Physiol,2017,595(22):6837-6850.
[24]   OKUDA S , KANDA F , NISHIMOTO K , et al . Hyperkalemic periodic paralysis and paramyotonia congenita—a novel sodium channel mutation[J]. J Neurol,2001,248(11):1003-1004.
[25]   PAYANDEH J , SCHEUER T , ZHENG N , et al . The crystal structure of a voltage-gated sodium channel[J]. Nature,2011,475(7356):353-358.
[26]   ZHANG X , REN W , DECAEN P , et al . Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel[J]. Nature,2012,486(7401):130-134.
[27]   SHEN H , ZHOU Q , PAN X , et al . Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution[J]. Science,2017,355(6328):eaal4326.
[28]   SHEN H , LI Z , JIANG Y , et al . Structural basis for the modulation of voltage-gated sodium channels by animal toxins[J]. Science,2018,362(6412):eaau2596.
[29]   MOMANY F A , MCGUIRE R F , BURGESS A W , et al . Energy parameters in polypeptides. Ⅶ. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids[J]. J Phys Chem,1975,79(22):2361-2381.
[30]   NEMETHY G , POTTLE M S , SCHERAGA H A . Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occurring amino acids[J]. J Phys Chem,1983,87(11):1883-1887.
[31]   LEHMANN-HORN F , ENGEL A G , RICKER K , et al . The periodic paralyses and paramyotonia congenita[J]. Myology,1994,2:1303-1334.
[1] LUN Yongzhi, SUN Jie. Identification of differentially expressed genes in peripheral blood mononuclear cells of patients with hepatocellular carcinoma and its regulatory network analysis[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 148-157.
[2] YANG Kun, HU Xiaosheng. Research progress on miR-21 in heart diseases[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 214-218.
[3] HONG Pingping, GUO Bingjie, LIN Li, LIN Xihua, ZHOU Jiaqiang. A novel mutation W257R in GCK gene discovered from a Chinese patient with maturity onset diabetes of the young[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 200-203.
[4] DU Dongfen,ZHU Lixia,WANG Yungui,YE XiujinG. Expression of WT1 gene and its prognostic value in patients with acute myeloid leukemia[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 50-57.
[5] SUN Boqiang,WANG Qiongyan,PAN Dongli. Mechanisms of herpes simplex virus latency and reactivation[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 89-101.
[6] YIN Li,LI Ge,SHEN Jian,LIU Zhenjie. Screening for inherited thrombophilia and genome sequencing[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 606-611.
[7] WENG Binghuan,XU Wei,SU Lan,SHEN Min,LI Rong,XU Xiaopeng,LI Lanjuan. Establishment of cell lines for quality control of prenatal genetic diagnosis by SV40LT gene transfection[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 520-524.
[8] SHI Ting,YE Xiujin. Roles of CCAAT enhancer binding protein α in acute myeloblastic leukemia[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 552-557.
[9] PAN Zongfu,FANG Qilu,ZHANG Yiwen,LI Li,HUANG Ping. Identification of key pathways and drug repurposing for anaplastic thyroid carcinoma by integrated bioinformatics analysis[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 187-193.
[10] XIA Haixiong,LI Li,ZHOU Yanhua,REN Pingping,HE Zhixu,SHU Liping. Expression of g6pd gene in wild type zebrafish embryos of early development[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 57-63.
[11] SHEN Jie,CHEN Wendong,JI Kaida,GAO Pingjin,ZHU Dingliang. Effect of Arg188Gln (G/A) mutation on enzymatic activity of kynureninase[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 643-648.
[12] WANG Mengyan, ZHU Biao. Research progress on genes mutations related to sulfa drug resistance in Pneumocystis jirovecii[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 563-569.
[13] REN Xiaomei, XIN Bao, QIAN Wenwen, ZHANG Rongqiang. Effects of low salt diet on gene expression in dog's heart[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 433-438.
[14] JIANG Yiqian, GUO Qingmin, GU Jianzhong, XU Xiaoping, AN Suhong, SU Fang, BAO Yanhong, HUANG Changxin, GUAN Xiaoxiang. Effect of microRNA-29b on proliferation and migration of breast cancer cells and its molecular mechanism[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 349-356.
[15] CHEN Dahua, LI Youming. Construction of all-in-one CRISPR/Cas9 vector system targeting miR-101a gene in mouse hepatic cell line AML12[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 427-432.