|
|
Research progress on the animal models and treatment strategies of diabetic foot ulcer |
GAO Siqian1( ),SHEN Yongmei2,GENG Funeng2,LI Yanhua3,GAO Jianqing1,3,*( ) |
(1) Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (2) Sichuan Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610000, China (3) Jiangsu Engineering Research Center for New-Type External and Transdermal Preparations, Changzhou 213000, China |
|
|
Abstract The suitable experimental animal model is important in research of pathogenesis and therapeutic strategies of diabetic foot ulcer, and the murine model is the most commonly used one at present. It can be divided into two types: the animal model simulating pathological conditions and the model simulating clinical symptoms. This article reviews the current research progress on the mechanisms of diabetic ulcer pathogenesis, and relevant treatment strategies, including the inhibition of matrix metalloproteinases (MMPs) expression, promotion of angiogenesis and anti-inflammatory therapy.
|
Received: 24 August 2016
Published: 06 July 2017
|
|
Corresponding Authors:
GAO Jianqing
E-mail: 13657656063@163.com;gaojianqing@zju.edu.cn
|
About author: GAO Jianqing, E-mail:gaojianqing@.zju.edu.cn |
糖尿病溃疡动物模型的建立及相关治疗研究进展
为了更好地探索糖尿病足的发病机制,并为其治疗研究提供依据,需要建立适宜的糖尿病足实验动物模型。目前,最为常用的动物模型采用鼠类;根据模型建立方式的不同,可分为模拟病理因素的动物模型和模拟临床病征的动物模型两大类。随着糖尿病溃疡致病机制研究的深入,近年来相应的治疗策略如抑制基质金属蛋白酶的表达、促进血管新生、抗炎治疗等研究也取得了长足进展。本文概述了上述研究进展。
关键词:
糖尿病足/病理学,
糖尿病足/治疗,
疾病模型, 动物,
综述
|
|
[1] |
GUARIGUATA L, WHITING D, WEIL C et al. The International Diabetes Federation diabetes atlas methodology for estimating global and national prevalence of diabetes in adults. Diabetes Res Clin Pract. 2011, 94(3): 322-332 doi: 10.1016/j.diabres.2011.10.040
|
|
|
[2] |
SCHAUER P R, RUBINO F . International Diabetes Federation position statement on bariatric surgery for type 2 diabetes:implications for patients, physicians, and surgeons. Surg Obes Relat Dis. 2011, 7(4): 448-451 doi: 10.1016/j.soard.2011.05.015
doi: 10.1016/j.soard.2011.05.015
pmid: 21782138
|
|
|
[3] |
HSU I, PARKINSON L G, SHEN Y et al. Serpina3n accelerates tissue repair in a diabetic mouse model of delayed wound healing. Cell Death Dis. 2014, 5: e1458 doi: 10.1038/cddis.2014.423
doi: 10.1038/cddis.2014.423
pmid: 25299783
|
|
|
[4] |
DESHPANDE A D, HARRIS-HAYES M, SCHOOTMAN M . Epidemiology of diabetes and diabetes-related complications. Phys Ther. 2008, 88(11): 1254-1264 doi: 10.2522/ptj.20080020
doi: 10.2522/ptj.20080020
pmid: 18801858
|
|
|
[5] |
SINGH N, ARMSTRONG D G, LIPSKY B A . Preventing foot ulcers in patients with diabetes. JAMA. 2005, 293(2): 217-228 doi: 10.1001/jama.293.2.217
doi: 10.1001/jama.293.2.217
pmid: 15644549
|
|
|
[6] |
RATHUR H M, BOULTON A J . Recent advances in the diagnosis and management of diabetic neuropathy. J Bone Joint Surg Br. 2005, 87(12): 1605-1610
|
|
|
[7] |
SNYDER B J, WALDMAN B J . Venous thromboembolism prophylaxis and wound healing in patients undergoing major orthopedic surgery. Adv Skin Wound Care. 2009, 22(7): 311-315 doi: 10.1097/01.ASW.0000305485.98734.1f
doi: 10.1097/01.ASW.0000305485.98734.1f
pmid: 20375968
|
|
|
[8] |
ANDREWS K L, HOUDEK M T, KIEMELE L J . Wound management of chronic diabetic foot ulcers:from the basics to regenerative medicine. Prosthet Orthot Int. 2015, 39(1): 29-39 doi: 10.1177/0309364614534296
doi: 10.1177/0309364614534296
pmid: 25614499
|
|
|
[9] |
DESPOSITO D, CHOLLET C, TAVEAU C et al. Improvement of skin wound healing in diabetic mice by kinin B2 receptor blockade. Clin Sci (Lond). 2016, 130(1): 45-56
|
|
|
[10] |
FRYKBERG R G, BANKS J . Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle). 2015, 4(9): 560-582 doi: 10.1089/wound.2015.0635
doi: 10.1089/wound.2015.0635
pmid: 26339534
|
|
|
[11] |
SHEETS A R, MASSEY C J, CRONK S M et al. Matrix-and plasma-derived peptides promote tissue-specific injury responses and wound healing in diabetic swine. J Transl Med. 2016, 14(1): 197 doi: 10.1186/s12967-016-0946-1
doi: 10.1186/s12967-016-0946-1
pmid: 27369317
|
|
|
[12] |
KIWANUKA E, HACKL F, PHILIP J et al. Comparison of healing parameters in porcine full-thickness wounds transplanted with skin micrografts, split-thickness skin grafts, and cultured keratinocytes. J Am Coll Surg. 2011, 213(6): 728-735 doi: 10.1016/j.jamcollsurg.2011.08.020
doi: 10.1016/j.jamcollsurg.2011.08.020
pmid: 22018809
|
|
|
[13] |
O'LOUGHLIN A, KULKARNI M, VAUGHAN E E et al. Autologous circulating angiogenic cells treated with osteopontin and delivered via a collagen scaffold enhance wound healing in the alloxan-induced diabetic rabbit ear ulcer model. Stem Cell Res Ther. 2013, 4(6): 158 doi: 10.1186/scrt388
|
|
|
[14] |
GóNGORA J, DíAZ-ROA A, RAMíREZ-HERNáNDEZ A et al. Evaluating the effect of Sarconesiopsis magellanica (Diptera:Calliphoridae) larvae-derived haemolymph and fat body extracts on chronic wounds in diabetic rabbits. J Diabetes Res. 2015, 2015: 270253
|
|
|
[15] |
MICHAELS J, CHURGIN S S, BLECHMAN K M et al. db/db mice exhibit severe wound-healing impairments compared with other murine diabetic strains in a silicone-splinted excisional wound model. Wound Repair Regen. 2007, 15(5): 665-670 doi: 10.1111/wrr.2007.15.issue-5
doi: 10.1111/j.1524-475X.2007.00273.x
pmid: 17971012
|
|
|
[16] |
KIM H, HAN J W, LEE J Y et al. Diabetic mesenchymal stem cells are ineffective for improving limb ischemia due to their impaired angiogenic capability. Cell Transplant. 2015, 24(8): 1571-1584 doi: 10.3727/096368914X682792
doi: 10.3727/096368914X682792
pmid: 25008576
|
|
|
[17] |
TI D, HAO H, XIA L et al. Controlled release of thymosin beta 4 using a collagen-chitosan sponge scaffold augments cutaneous wound healing and increases angiogenesis in diabetic rats with hindlimb ischemia. Tissue Eng Part A. 2015, 21(3-4): 541-549 doi: 10.1089/ten.tea.2013.0750
doi: 10.1089/ten.TEA.2013.0750
pmid: 25204972
|
|
|
[18] |
HE S, SHEN L, WU Y et al. Effect of brain-derived neurotrophic factor on mesenchymal stem cell-seeded electrospinning biomaterial for treating ischemic diabetic ulcers via milieu-dependent differentiation mechanism. Tissue Eng Part A. 2015, 21(5-6): 928-938 doi: 10.1089/ten.tea.2014.0113
doi: 10.1089/ten.TEA.2014.0113
pmid: 25316594
|
|
|
[19] |
TONG C, HAO H, XIA L et al. Hypoxia pretreatment of bone marrow-derived mesenchymal stem cells seeded in a collagen-chitosan sponge scaffold promotes skin wound healing in diabetic rats with hindlimb ischemia. Wound Repair Regen. 2016, 24(1): 45-56 doi: 10.1111/wrr.2016.24.issue-1
doi: 10.1111/wrr.12369
pmid: 26463737
|
|
|
[20] |
TAM J C, KO C H, LAU K M et al. A Chinese 2-herb formula (NF3) promotes hindlimb ischemia-induced neovascularization and wound healing of diabetic rats. J Diabetes Complications. 2014, 28(4): 436-447 doi: 10.1016/j.jdiacomp.2014.03.004
doi: 10.1016/j.jdiacomp.2014.03.004
pmid: 24731763
|
|
|
[21] |
SALCIDO R, POPESCU A, AHN C . Animal models in pressure ulcer research. J Spinal Cord Med. 2007, 30(2): 107-116 doi: 10.1080/10790268.2007.11753921
doi: 10.1177/0269881106072670
pmid: 17591222
|
|
|
[22] |
STADLER I, ZHANG R Y, OSKOUI P et al. Development of a simple, noninvasive, clinically relevant model of pressure ulcers in the mouse. J Invest Surg. 2004, 17(4): 221-227 doi: 10.1080/08941930490472046
doi: 10.1080/08941930490472046
pmid: 15371164
|
|
|
[23] |
DUSCHER D, NEOFYTOU E, WONG V W et al. Transdermal deferoxamine prevents pressure-induced diabetic ulcers. Proc Natl Acad Sci U S A. 2015, 112(1): 94-99 doi: 10.1073/pnas.1413445112
doi: 10.1073/pnas.1413445112
pmid: 25535360
|
|
|
[24] |
SHEAJ D . Pressure sores:classification and management. Clin Orthop Relat Res. 1975 112): 89-100
|
|
|
[25] |
Mash N D . Dermal wounds:pressure sores. Philosophy of the IAET. J Enterostomal Ther. 1988, 15(1): 4-17
|
|
|
[26] |
DANIGO A, NASSER M, BESSAGUET F et al. Candesartan restores pressure-induced vasodilation and prevents skin pressure ulcer formation in diabetic mice. Cardiovasc Diabetol. 2015, 14: 26 doi: 10.1186/s12933-015-0185-4
doi: 10.1186/s12933-015-0185-4
pmid: 25888905
|
|
|
[27] |
CUI F F, PAN Y Y, XIE H H et al. Pressure combined with ischemia/reperfusion injury induces deep tissue injury via endoplasmic reticulum stress in a rat pressure ulcer model. Int J Mol Sci. 2016, 17(3): 284 doi: 10.3390/ijms17030284
doi: 10.3390/ijms17030284
pmid: 4813148
|
|
|
[28] |
LOBMANN R . Neuropathy and diabetic foot ulcers. Internist (Berl). 2015, 56(5): 503-512 doi: 10.1007/s00108-014-3630-7
doi: 10.1007/s00108-014-3630-7
pmid: 25903093
|
|
|
[29] |
AMIN N, DOUPIS J . Diabetic foot disease:from the evaluation of the "foot at risk" to the novel diabetic ulcer treatment modalities. World J Diabetes. 2016, 7(7): 153-164 doi: 10.4239/wjd.v7.i7.153
|
|
|
[30] |
JIN S, ZHANG M, GAO Y et al. The efficacy of Jing Wan Hong ointment for nerve injury diabetic foot ulcer and its mechanisms. J Diabetes Res. 2014, 2014: 259412
|
|
|
[31] |
BOWLING F L, JUDE E B, BOULTON A J . MRSA and diabetic foot wounds:contaminating or infecting organisms?. Curr Diab Rep. 2009, 9(6): 440-444 doi: 10.1007/s11892-009-0072-z
doi: 10.1007/s11892-009-0072-z
pmid: 19954689
|
|
|
[32] |
CHHIBBER S, KAUR T, KAUR S . Co-therapy using lytic bacteriophage and linezolid:effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PLoS One. 2013, 8(2): e56022 doi: 10.1371/journal.pone.0056022
doi: 10.1371/journal.pone.0056022
pmid: 23418497
|
|
|
[33] |
LEE J H, JA K J, SHIN H B et al. Comparative efficacy of silver-containing dressing materials for treating MRSA-infected wounds in rats with streptozotocin-induced diabetes. Wounds. 2013, 25(12): 345-354
|
|
|
[34] |
RANDERIA P S, SEEGER M A, WANG X Q et al. siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown. Proc Natl Acad Sci U S A. 2015, 112(18): 5573-5578 doi: 10.1073/pnas.1505951112
doi: 10.1073/pnas.1505951112
pmid: 259025073
|
|
|
[35] |
KATO J, KAMIYA H, HIMENO T et al. Mesenchymal stem cells ameliorate impaired wound healing through enhancing keratinocyte functions in diabetic foot ulcerations on the plantar skin of rats. J Diabetes Complications. 2014, 28(5): 588-595 doi: 10.1016/j.jdiacomp.2014.05.003
doi: 10.1016/j.jdiacomp.2014.05.003
pmid: 25027388
|
|
|
[36] |
SULLIVAN T P, EAGLSTEIN W H, DAVIS S C et al. The pig as a model for human wound healing. Wound Repair Regen. 2001, 9(2): 66-76 doi: 10.1046/j.1524-475x.2001.00066.x
doi: 10.1046/j.1524-475x.2001.00066.x
pmid: 11350644
|
|
|
[37] |
WONG V W, SORKIN M, GLOTZBACH J P et al. Surgical approaches to create murine models of human wound healing. J Biomed Biotechnol. 2011, 2011: 969618
|
|
|
[38] |
PARK S A, TEIXEIRA L B, RAGHUNATHAN V K et al. Full-thickness splinted skin wound healing models in db/db and heterozygous mice:implications for wound healing impairment. Wound Repair Regen. 2014, 22(3): 368-380 doi: 10.1111/wrr.12172
doi: 10.1111/wrr.12172
pmid: 24844336
|
|
|
[39] |
CHEREDDY K K, LOPES A, KOUSSOROPLIS S et al. Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds. Nanomedicine. 2015, 11(8): 1975-1984 doi: 10.1016/j.nano.2015.07.006
doi: 10.1016/j.nano.2015.07.006
pmid: 26238081
|
|
|
[40] |
WANG X, GE J, TREDGETE E et al. The mouse excisional wound splinting model, including applications for stem cell transplantation. Nat Protoc. 2013, 8(2): 302-309 doi: 10.1038/nprot.2013.002
doi: 10.1038/nprot.2013.002
pmid: 23329003
|
|
|
[41] |
TIAN M, QING C, NIU Y et al. The relationship between inflammation and impaired wound healing in a diabetic rat burn model. J Burn Care Res. 2016, 37(2): e115-e124 doi: 10.1097/BCR.0000000000000171
doi: 10.1097/BCR.0000000000000171
pmid: 25407384
|
|
|
[42] |
RANJBAR R, TAKHTFOOLADIM A . The effects of low level laser therapy on Staphylococcus aureus infected third-degree burns in diabetic rats. Acta Cir Bras. 2016, 31(4): 250-255 doi: 10.1590/S0102-865020160040000005
doi: 10.1590/S0102-865020160040000005
pmid: 27168537
|
|
|
[43] |
ZHU Y, HOSHI R, CHEN S et al. Sustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetes. J Control Release. 2016, 238: 114-122 doi: 10.1016/j.jconrel.2016.07.043
doi: 10.1016/j.jconrel.2016.07.043
pmid: 27473766
|
|
|
[44] |
RAM M, SINGH V, KUMAWAT S et al. Deferoxamine modulates cytokines and growth factors to accelerate cutaneous wound healing in diabetic rats. Eur J Pharmacol. 2015, 764: 9-21 doi: 10.1016/j.ejphar.2015.06.029
doi: 10.1016/j.ejphar.2015.06.029
pmid: 26101070
|
|
|
[45] |
LEAL E C, CARVALHO E, TELLECHEA A et al. Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype. Am J Pathol. 2015, 185(6): 1638-1648 doi: 10.1016/j.ajpath.2015.02.011
doi: 10.1016/j.ajpath.2015.02.011
pmid: 25871534
|
|
|
[46] |
TOKATLIAN T, CAM C, SEGURA T . Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model. Adv Healthc Mater. 2015, 4(7): 1084-1091 doi: 10.1002/adhm.v4.7
doi: 10.1002/adhm.201400783
pmid: 25694196
|
|
|
[47] |
TELLECHEA A, SILVA E A, MIN J et al. Alginate and DNA gels are suitable delivery systems for diabetic wound healing. Int J Low Extrem Wounds. 2015, 14(2): 146-153 doi: 10.1177/1534734615580018
doi: 10.1177/1534734615580018
pmid: 26032947
|
|
|
[48] |
SACCO P, TRAVAN A, BORGOGNA M et al. Silver-containing antimicrobial membrane based on chitosan-TPP hydrogel for the treatment of wounds. J Mater Sci Mater Med. 2015, 26(3): 128 doi: 10.1007/s10856-015-5474-7
doi: 10.1007/s10856-015-5474-7
pmid: 25693676
|
|
|
[49] |
NAVONE S E, PASCUCCI L, DOSSENA M et al. Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice. Stem Cell Res Ther. 2014, 5(1): 7 doi: 10.1186/scrt396
doi: 10.1186/scrt396
pmid: 4055150
|
|
|
[50] |
XIE Z, PARAS C B, WENG H et al. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater. 2013, 9(12): 9351-9359 doi: 10.1016/j.actbio.2013.07.030
doi: 10.1016/j.actbio.2013.07.030
pmid: 3818500
|
|
|
[51] |
KIM H S, YOO H S . In vitro and in vivo epidermal growth factor gene therapy for diabetic ulcers with electrospun fibrous meshes. Acta Biomater. 2013, 9(7): 7371-7380 doi: 10.1016/j.actbio.2013.03.018
doi: 10.1016/j.actbio.2013.03.018
pmid: 23528498
|
|
|
[52] |
LOSI P, BRIGANTI E, ERRICO C et al. Fibrin-based scaffold incorporating VEGF-and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomater. 2013, 9(8): 7814-7821 doi: 10.1016/j.actbio.2013.04.019
doi: 10.1016/j.actbio.2013.04.019
pmid: 23603001
|
|
|
[53] |
DAVEY G C, PATIL S B, O'LOUGHLIN A et al. Mesenchymal stem cell-based treatment for microvascular and secondary complications of diabetes mellitus. Front Endocrinol (Lausanne). 2014, 5: 86
|
|
|
[54] |
FENG G, HAO D, CHAI J . Processing of CXCL12 impedes the recruitment of endothelial progenitor cells in diabetic wound healing. FEBS J. 2014, 281(22): 5054-5062 doi: 10.1111/febs.2014.281.issue-22
doi: 10.1111/febs.13043
pmid: 25211042
|
|
|
[55] |
KUO Y R, WANG C T, CHENG J T et al. Adipose-derived stem cells accelerate diabetic wound healing through theinduction of autocrine and paracrine effects. Cell Transplant. 2016, 25(1): 71-81 doi: 10.3727/096368915X687921
|
|
|
[56] |
FLECK C A, CHAKRAVARTHY D . Newer debridement methods for wound bed preparation. Adv Skin Wound Care. 2010, 23(7): 313-315 doi: 10.1097/01.ASW.0000383755.62091.1e
doi: 10.1097/01.ASW.0000383755.62091.1e
pmid: 20562539
|
|
|
[57] |
FALABELLA A F . Debridement and wound bed preparation. Dermatol Ther. 2006, 19(6): 317-325 doi: 10.1111/dth.2006.19.issue-6
doi: 10.1111/j.1529-8019.2006.00090.x
pmid: 17199674
|
|
|
[58] |
XIE X, MCGREGOR M, DENDUKURI N . The clinical effectiveness of negative pressure wound therapy:a systematic review. J Wound Care. 2010, 19(11): 490-495 doi: 10.12968/jowc.2010.19.11.79697
doi: 10.12968/jowc.2010.19.11.79697
pmid: 00031015
|
|
|
[59] |
LI X, LIU J, LIU Y et al. Negative pressure wound therapy accelerates rats diabetic wound by promoting agenesis. Int J Clin Exp Med. 2015, 8(3): 3506-3513
|
|
|
[60] |
AYDIN F, KAYA A, KARAPINAR L et al. IGF-1 increases with hyperbaric oxygen therapy and promotes wound healing in diabetic foot ulcers. J Diabetes Res. 2013, 2013: 567834
|
|
|
[61] |
HUANG E T, MANSOURI J, MURAD M H et al. A clinical practice guideline for the use of hyperbaric oxygen therapy in the treatment of diabetic foot ulcers. Undersea Hyperb Med. 2015, 42(3): 205-247
|
|
|
[62] |
NAVESC C . The diabetic foot:a historical overview and gaps in current treatment. Adv Wound Care (New Rochelle). 2016, 5(5): 191-197 doi: 10.1089/wound.2013.0518
doi: 10.1089/wound.2013.0518
pmid: 4827295
|
|
|
[63] |
LIU Y, MIN D, BOLTON T et al. Increased matrix metalloproteinase-9 predicts poor wound healing in diabetic foot ulcers. Diabetes Care. 2009, 32(1): 117-119 doi: 10.2337/dc08-0763
doi: 10.2337/dc09-1394
pmid: 19875600
|
|
|
[64] |
CHANG M . Restructuring of the extracellular matrix in diabetic wounds and healing:a perspective. Pharmacol Res. 2016, 107: 243-248 doi: 10.1016/j.phrs.2016.03.008
doi: 10.1016/j.phrs.2016.03.008
pmid: 27033051
|
|
|
[65] |
GAO M, NGUYEN T T, SUCKOW M A et al. Acceleration of diabetic wound healing using a novel protease-anti-protease combination therapy. Proc Natl Acad Sci U S A. 2015, 112(49): 15226-15231 doi: 10.1073/pnas.1517847112
doi: 10.1073/pnas.1517847112
pmid: 26598687
|
|
|
[66] |
CASTLEBERRY S A, ALMQUIST B D, LI W et al. Self-assembled wound dressings silence MMP-9 and improve diabetic wound healing in vivo. Adv Mater. 2016, 28(9): 1809-1817 doi: 10.1002/adma.201503565
doi: 10.1002/adma.201503565
pmid: 26695434
|
|
|
[67] |
KIM H S, YOO H S . Matrix metalloproteinase-inspired suicidal treatments of diabetic ulcers with siRNA-decorated nanofibrous meshes. Gene Ther. 2013, 20(4): 378-385 doi: 10.1038/gt.2012.49
doi: 10.1038/gt.2012.49
pmid: 22717742
|
|
|
[68] |
EMING S A, BRACHVOGEL B, ODORISIO T et al. Regulation of angiogenesis:wound healing as a model. Prog Histochem Cytochem. 2007, 42(3): 115-170 doi: 10.1016/j.proghi.2007.06.001
doi: 10.1016/j.proghi.2007.06.001
pmid: 17980716
|
|
|
[69] |
RAM M, SINGH V, KUMAWAT S et al. Deferoxamine modulates cytokines and growth factors to accelerate cutaneous wound healing in diabetic rats. Eur J Pharmacol. 2015, 764: 9-21 doi: 10.1016/j.ejphar.2015.06.029
doi: 10.1016/j.ejphar.2015.06.029
pmid: 26101070
|
|
|
[70] |
CHEN H, JIA P, KANG H et al. Upregulating Hif-1alpha byhydrogel nanofibrous scaffolds for rapidly recruiting angiogenesis relative cells in diabetic wound. Adv Healthc Mater. 2016, 5(8): 907-918 doi: 10.1002/adhm.201501018
doi: 10.1002/adhm.201501018
pmid: 26891197
|
|
|
[71] |
LIU Z, BENARD O, SYEDA M M et al. Inhibition of prostaglandin transporter (PGT) promotes perfusion and vascularization and accelerates wound healing in non-diabetic and diabetic rats. PLoS One. 2015, 10(7): e0133615 doi: 10.1371/journal.pone.0133615
doi: 10.1371/journal.pone.0133615
pmid: 4521828
|
|
|
[72] |
CHEN W, WU Y, LI L et al. Adenosine accelerates the healing of diabetic ischemic ulcers by improving autophagy of endothelial progenitor cells grown on a biomaterial. Sci Rep. 2015, 5: 11594 doi: 10.1038/srep11594
doi: 10.1038/srep11594
pmid: 26108983
|
|
|
[73] |
BLAKYTNY R, JUDE E . The molecular biology of chronic wounds and delayed healing in diabetes. Diabet Med. 2006, 23(6): 594-608 doi: 10.1111/dme.2006.23.issue-6
doi: 10.1111/j.1464-5491.2006.01773.x
pmid: 16759300
|
|
|
[74] |
MOURA L I, DIAS A M, LEAL E C et al. Chitosan-based dressings loaded with neurotensin-an efficient strategy to improve early diabetic wound healing. Acta Biomater. 2014, 10(2): 843-857 doi: 10.1016/j.actbio.2013.09.040
doi: 10.1016/j.actbio.2013.09.040
pmid: 24121197
|
|
|
[75] |
MOURA L I, DIAS A M, SUESCA E et al. Neurotensin-loaded collagen dressings reduce inflammation and improve wound healing in diabetic mice. Biochim Biophys Acta. 2014, 1842(1): 32-43 doi: 10.1016/j.bbadis.2013.10.009
doi: 10.1016/j.bbadis.2013.10.009
pmid: 24161538
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|