Please wait a minute...
J Zhejiang Univ (Med Sci)  2017, Vol. 46 Issue (1): 97-105    DOI: 10.3785/j.issn.1008-9292.2017.02.15
    
Research progress on the animal models and treatment strategies of diabetic foot ulcer
GAO Siqian1(),SHEN Yongmei2,GENG Funeng2,LI Yanhua3,GAO Jianqing1,3,*()
(1) Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
(2) Sichuan Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610000, China
(3) Jiangsu Engineering Research Center for New-Type External and Transdermal Preparations, Changzhou 213000, China
Download: HTML   HTML( 8 )   PDF(1012KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The suitable experimental animal model is important in research of pathogenesis and therapeutic strategies of diabetic foot ulcer, and the murine model is the most commonly used one at present. It can be divided into two types: the animal model simulating pathological conditions and the model simulating clinical symptoms. This article reviews the current research progress on the mechanisms of diabetic ulcer pathogenesis, and relevant treatment strategies, including the inhibition of matrix metalloproteinases (MMPs) expression, promotion of angiogenesis and anti-inflammatory therapy.



Key wordsDiabetic foot/pathology      Diabetic foot/therapy      Disease models, animal      Review     
Received: 24 August 2016      Published: 06 July 2017
CLC:  R587.1  
  R965.1  
Corresponding Authors: GAO Jianqing     E-mail: 13657656063@163.com;gaojianqing@zju.edu.cn
About author: GAO Jianqing, E-mail:gaojianqing@.zju.edu.cn
Cite this article:

GAO Siqian,SHEN Yongmei,GENG Funeng,LI Yanhua,GAO Jianqing. Research progress on the animal models and treatment strategies of diabetic foot ulcer. J Zhejiang Univ (Med Sci), 2017, 46(1): 97-105.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2017.02.15     OR     http://www.zjujournals.com/med/Y2017/V46/I1/97


糖尿病溃疡动物模型的建立及相关治疗研究进展

为了更好地探索糖尿病足的发病机制,并为其治疗研究提供依据,需要建立适宜的糖尿病足实验动物模型。目前,最为常用的动物模型采用鼠类;根据模型建立方式的不同,可分为模拟病理因素的动物模型和模拟临床病征的动物模型两大类。随着糖尿病溃疡致病机制研究的深入,近年来相应的治疗策略如抑制基质金属蛋白酶的表达、促进血管新生、抗炎治疗等研究也取得了长足进展。本文概述了上述研究进展。


关键词: 糖尿病足/病理学,  糖尿病足/治疗,  疾病模型, 动物,  综述 
建模方法 优点 缺点
缺血性溃疡——血管结扎法
皮肤压迫法
诱导缺血自发性溃疡的形成,并结合同步血流监测,可信度高;溃疡面积可控制,成模率较高,便于定量分析;适用于血管相关的机制研究及疗效评价 建立的急性缺血溃疡模型与糖尿病慢性缺血形成的溃疡有较大差别
神经性溃疡——分离坐骨神经 诱导神经病变的自发性溃疡形成,适用于神经相关的机制研究及疗效评价 成模率低
感染性溃疡——细菌感染 操作简便,可作为一种加重糖尿病溃疡的额外诱发因素,适用于疗效评价 与糖尿病溃疡病理机制无直接关系
皮肤全层切除模型 应用最为广泛,操作简单,耗时短,成模率高,可随时直观地对创面实施观察和量化分析,适用于疗效评价 属于非自发性溃疡,与临床糖尿病病征相差较远,对动物的糖尿病病变程度要求较高
环形夹板模型 属于全层皮肤切除模型的改良模型,应用广泛,成模率高,能最大程度减少伤口的收缩,更好地模拟人类伤口的愈合过程,且创面大小可控,可随时监测与分析,适用于疗效评价 属于非自发性溃疡,且对动物的糖尿病病变程度要求较高
烫伤模型 模拟外界的诱发因素,操作简便,可用于疗效评价 属于非自发性溃疡,且创面面积不可控,不利于量化分析,与糖尿病病理机制关系不大
Tab 1 Advantages and disadvantages of diabetic foot ulcers modeling methods
[1]   GUARIGUATA L, WHITING D, WEIL C et al. The International Diabetes Federation diabetes atlas methodology for estimating global and national prevalence of diabetes in adults. Diabetes Res Clin Pract. 2011, 94(3): 322-332 doi: 10.1016/j.diabres.2011.10.040
[2]   SCHAUER P R, RUBINO F . International Diabetes Federation position statement on bariatric surgery for type 2 diabetes:implications for patients, physicians, and surgeons. Surg Obes Relat Dis. 2011, 7(4): 448-451 doi: 10.1016/j.soard.2011.05.015
doi: 10.1016/j.soard.2011.05.015 pmid: 21782138
[3]   HSU I, PARKINSON L G, SHEN Y et al. Serpina3n accelerates tissue repair in a diabetic mouse model of delayed wound healing. Cell Death Dis. 2014, 5: e1458 doi: 10.1038/cddis.2014.423
doi: 10.1038/cddis.2014.423 pmid: 25299783
[4]   DESHPANDE A D, HARRIS-HAYES M, SCHOOTMAN M . Epidemiology of diabetes and diabetes-related complications. Phys Ther. 2008, 88(11): 1254-1264 doi: 10.2522/ptj.20080020
doi: 10.2522/ptj.20080020 pmid: 18801858
[5]   SINGH N, ARMSTRONG D G, LIPSKY B A . Preventing foot ulcers in patients with diabetes. JAMA. 2005, 293(2): 217-228 doi: 10.1001/jama.293.2.217
doi: 10.1001/jama.293.2.217 pmid: 15644549
[6]   RATHUR H M, BOULTON A J . Recent advances in the diagnosis and management of diabetic neuropathy. J Bone Joint Surg Br. 2005, 87(12): 1605-1610
[7]   SNYDER B J, WALDMAN B J . Venous thromboembolism prophylaxis and wound healing in patients undergoing major orthopedic surgery. Adv Skin Wound Care. 2009, 22(7): 311-315 doi: 10.1097/01.ASW.0000305485.98734.1f
doi: 10.1097/01.ASW.0000305485.98734.1f pmid: 20375968
[8]   ANDREWS K L, HOUDEK M T, KIEMELE L J . Wound management of chronic diabetic foot ulcers:from the basics to regenerative medicine. Prosthet Orthot Int. 2015, 39(1): 29-39 doi: 10.1177/0309364614534296
doi: 10.1177/0309364614534296 pmid: 25614499
[9]   DESPOSITO D, CHOLLET C, TAVEAU C et al. Improvement of skin wound healing in diabetic mice by kinin B2 receptor blockade. Clin Sci (Lond). 2016, 130(1): 45-56
[10]   FRYKBERG R G, BANKS J . Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle). 2015, 4(9): 560-582 doi: 10.1089/wound.2015.0635
doi: 10.1089/wound.2015.0635 pmid: 26339534
[11]   SHEETS A R, MASSEY C J, CRONK S M et al. Matrix-and plasma-derived peptides promote tissue-specific injury responses and wound healing in diabetic swine. J Transl Med. 2016, 14(1): 197 doi: 10.1186/s12967-016-0946-1
doi: 10.1186/s12967-016-0946-1 pmid: 27369317
[12]   KIWANUKA E, HACKL F, PHILIP J et al. Comparison of healing parameters in porcine full-thickness wounds transplanted with skin micrografts, split-thickness skin grafts, and cultured keratinocytes. J Am Coll Surg. 2011, 213(6): 728-735 doi: 10.1016/j.jamcollsurg.2011.08.020
doi: 10.1016/j.jamcollsurg.2011.08.020 pmid: 22018809
[13]   O'LOUGHLIN A, KULKARNI M, VAUGHAN E E et al. Autologous circulating angiogenic cells treated with osteopontin and delivered via a collagen scaffold enhance wound healing in the alloxan-induced diabetic rabbit ear ulcer model. Stem Cell Res Ther. 2013, 4(6): 158 doi: 10.1186/scrt388
[14]   GóNGORA J, DíAZ-ROA A, RAMíREZ-HERNáNDEZ A et al. Evaluating the effect of Sarconesiopsis magellanica (Diptera:Calliphoridae) larvae-derived haemolymph and fat body extracts on chronic wounds in diabetic rabbits. J Diabetes Res. 2015, 2015: 270253
[15]   MICHAELS J, CHURGIN S S, BLECHMAN K M et al. db/db mice exhibit severe wound-healing impairments compared with other murine diabetic strains in a silicone-splinted excisional wound model. Wound Repair Regen. 2007, 15(5): 665-670 doi: 10.1111/wrr.2007.15.issue-5
doi: 10.1111/j.1524-475X.2007.00273.x pmid: 17971012
[16]   KIM H, HAN J W, LEE J Y et al. Diabetic mesenchymal stem cells are ineffective for improving limb ischemia due to their impaired angiogenic capability. Cell Transplant. 2015, 24(8): 1571-1584 doi: 10.3727/096368914X682792
doi: 10.3727/096368914X682792 pmid: 25008576
[17]   TI D, HAO H, XIA L et al. Controlled release of thymosin beta 4 using a collagen-chitosan sponge scaffold augments cutaneous wound healing and increases angiogenesis in diabetic rats with hindlimb ischemia. Tissue Eng Part A. 2015, 21(3-4): 541-549 doi: 10.1089/ten.tea.2013.0750
doi: 10.1089/ten.TEA.2013.0750 pmid: 25204972
[18]   HE S, SHEN L, WU Y et al. Effect of brain-derived neurotrophic factor on mesenchymal stem cell-seeded electrospinning biomaterial for treating ischemic diabetic ulcers via milieu-dependent differentiation mechanism. Tissue Eng Part A. 2015, 21(5-6): 928-938 doi: 10.1089/ten.tea.2014.0113
doi: 10.1089/ten.TEA.2014.0113 pmid: 25316594
[19]   TONG C, HAO H, XIA L et al. Hypoxia pretreatment of bone marrow-derived mesenchymal stem cells seeded in a collagen-chitosan sponge scaffold promotes skin wound healing in diabetic rats with hindlimb ischemia. Wound Repair Regen. 2016, 24(1): 45-56 doi: 10.1111/wrr.2016.24.issue-1
doi: 10.1111/wrr.12369 pmid: 26463737
[20]   TAM J C, KO C H, LAU K M et al. A Chinese 2-herb formula (NF3) promotes hindlimb ischemia-induced neovascularization and wound healing of diabetic rats. J Diabetes Complications. 2014, 28(4): 436-447 doi: 10.1016/j.jdiacomp.2014.03.004
doi: 10.1016/j.jdiacomp.2014.03.004 pmid: 24731763
[21]   SALCIDO R, POPESCU A, AHN C . Animal models in pressure ulcer research. J Spinal Cord Med. 2007, 30(2): 107-116 doi: 10.1080/10790268.2007.11753921
doi: 10.1177/0269881106072670 pmid: 17591222
[22]   STADLER I, ZHANG R Y, OSKOUI P et al. Development of a simple, noninvasive, clinically relevant model of pressure ulcers in the mouse. J Invest Surg. 2004, 17(4): 221-227 doi: 10.1080/08941930490472046
doi: 10.1080/08941930490472046 pmid: 15371164
[23]   DUSCHER D, NEOFYTOU E, WONG V W et al. Transdermal deferoxamine prevents pressure-induced diabetic ulcers. Proc Natl Acad Sci U S A. 2015, 112(1): 94-99 doi: 10.1073/pnas.1413445112
doi: 10.1073/pnas.1413445112 pmid: 25535360
[24]   SHEAJ D . Pressure sores:classification and management. Clin Orthop Relat Res. 1975 112): 89-100
[25]   Mash N D . Dermal wounds:pressure sores. Philosophy of the IAET. J Enterostomal Ther. 1988, 15(1): 4-17
[26]   DANIGO A, NASSER M, BESSAGUET F et al. Candesartan restores pressure-induced vasodilation and prevents skin pressure ulcer formation in diabetic mice. Cardiovasc Diabetol. 2015, 14: 26 doi: 10.1186/s12933-015-0185-4
doi: 10.1186/s12933-015-0185-4 pmid: 25888905
[27]   CUI F F, PAN Y Y, XIE H H et al. Pressure combined with ischemia/reperfusion injury induces deep tissue injury via endoplasmic reticulum stress in a rat pressure ulcer model. Int J Mol Sci. 2016, 17(3): 284 doi: 10.3390/ijms17030284
doi: 10.3390/ijms17030284 pmid: 4813148
[28]   LOBMANN R . Neuropathy and diabetic foot ulcers. Internist (Berl). 2015, 56(5): 503-512 doi: 10.1007/s00108-014-3630-7
doi: 10.1007/s00108-014-3630-7 pmid: 25903093
[29]   AMIN N, DOUPIS J . Diabetic foot disease:from the evaluation of the "foot at risk" to the novel diabetic ulcer treatment modalities. World J Diabetes. 2016, 7(7): 153-164 doi: 10.4239/wjd.v7.i7.153
[30]   JIN S, ZHANG M, GAO Y et al. The efficacy of Jing Wan Hong ointment for nerve injury diabetic foot ulcer and its mechanisms. J Diabetes Res. 2014, 2014: 259412
[31]   BOWLING F L, JUDE E B, BOULTON A J . MRSA and diabetic foot wounds:contaminating or infecting organisms?. Curr Diab Rep. 2009, 9(6): 440-444 doi: 10.1007/s11892-009-0072-z
doi: 10.1007/s11892-009-0072-z pmid: 19954689
[32]   CHHIBBER S, KAUR T, KAUR S . Co-therapy using lytic bacteriophage and linezolid:effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PLoS One. 2013, 8(2): e56022 doi: 10.1371/journal.pone.0056022
doi: 10.1371/journal.pone.0056022 pmid: 23418497
[33]   LEE J H, JA K J, SHIN H B et al. Comparative efficacy of silver-containing dressing materials for treating MRSA-infected wounds in rats with streptozotocin-induced diabetes. Wounds. 2013, 25(12): 345-354
[34]   RANDERIA P S, SEEGER M A, WANG X Q et al. siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown. Proc Natl Acad Sci U S A. 2015, 112(18): 5573-5578 doi: 10.1073/pnas.1505951112
doi: 10.1073/pnas.1505951112 pmid: 259025073
[35]   KATO J, KAMIYA H, HIMENO T et al. Mesenchymal stem cells ameliorate impaired wound healing through enhancing keratinocyte functions in diabetic foot ulcerations on the plantar skin of rats. J Diabetes Complications. 2014, 28(5): 588-595 doi: 10.1016/j.jdiacomp.2014.05.003
doi: 10.1016/j.jdiacomp.2014.05.003 pmid: 25027388
[36]   SULLIVAN T P, EAGLSTEIN W H, DAVIS S C et al. The pig as a model for human wound healing. Wound Repair Regen. 2001, 9(2): 66-76 doi: 10.1046/j.1524-475x.2001.00066.x
doi: 10.1046/j.1524-475x.2001.00066.x pmid: 11350644
[37]   WONG V W, SORKIN M, GLOTZBACH J P et al. Surgical approaches to create murine models of human wound healing. J Biomed Biotechnol. 2011, 2011: 969618
[38]   PARK S A, TEIXEIRA L B, RAGHUNATHAN V K et al. Full-thickness splinted skin wound healing models in db/db and heterozygous mice:implications for wound healing impairment. Wound Repair Regen. 2014, 22(3): 368-380 doi: 10.1111/wrr.12172
doi: 10.1111/wrr.12172 pmid: 24844336
[39]   CHEREDDY K K, LOPES A, KOUSSOROPLIS S et al. Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds. Nanomedicine. 2015, 11(8): 1975-1984 doi: 10.1016/j.nano.2015.07.006
doi: 10.1016/j.nano.2015.07.006 pmid: 26238081
[40]   WANG X, GE J, TREDGETE E et al. The mouse excisional wound splinting model, including applications for stem cell transplantation. Nat Protoc. 2013, 8(2): 302-309 doi: 10.1038/nprot.2013.002
doi: 10.1038/nprot.2013.002 pmid: 23329003
[41]   TIAN M, QING C, NIU Y et al. The relationship between inflammation and impaired wound healing in a diabetic rat burn model. J Burn Care Res. 2016, 37(2): e115-e124 doi: 10.1097/BCR.0000000000000171
doi: 10.1097/BCR.0000000000000171 pmid: 25407384
[42]   RANJBAR R, TAKHTFOOLADIM A . The effects of low level laser therapy on Staphylococcus aureus infected third-degree burns in diabetic rats. Acta Cir Bras. 2016, 31(4): 250-255 doi: 10.1590/S0102-865020160040000005
doi: 10.1590/S0102-865020160040000005 pmid: 27168537
[43]   ZHU Y, HOSHI R, CHEN S et al. Sustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetes. J Control Release. 2016, 238: 114-122 doi: 10.1016/j.jconrel.2016.07.043
doi: 10.1016/j.jconrel.2016.07.043 pmid: 27473766
[44]   RAM M, SINGH V, KUMAWAT S et al. Deferoxamine modulates cytokines and growth factors to accelerate cutaneous wound healing in diabetic rats. Eur J Pharmacol. 2015, 764: 9-21 doi: 10.1016/j.ejphar.2015.06.029
doi: 10.1016/j.ejphar.2015.06.029 pmid: 26101070
[45]   LEAL E C, CARVALHO E, TELLECHEA A et al. Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype. Am J Pathol. 2015, 185(6): 1638-1648 doi: 10.1016/j.ajpath.2015.02.011
doi: 10.1016/j.ajpath.2015.02.011 pmid: 25871534
[46]   TOKATLIAN T, CAM C, SEGURA T . Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model. Adv Healthc Mater. 2015, 4(7): 1084-1091 doi: 10.1002/adhm.v4.7
doi: 10.1002/adhm.201400783 pmid: 25694196
[47]   TELLECHEA A, SILVA E A, MIN J et al. Alginate and DNA gels are suitable delivery systems for diabetic wound healing. Int J Low Extrem Wounds. 2015, 14(2): 146-153 doi: 10.1177/1534734615580018
doi: 10.1177/1534734615580018 pmid: 26032947
[48]   SACCO P, TRAVAN A, BORGOGNA M et al. Silver-containing antimicrobial membrane based on chitosan-TPP hydrogel for the treatment of wounds. J Mater Sci Mater Med. 2015, 26(3): 128 doi: 10.1007/s10856-015-5474-7
doi: 10.1007/s10856-015-5474-7 pmid: 25693676
[49]   NAVONE S E, PASCUCCI L, DOSSENA M et al. Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice. Stem Cell Res Ther. 2014, 5(1): 7 doi: 10.1186/scrt396
doi: 10.1186/scrt396 pmid: 4055150
[50]   XIE Z, PARAS C B, WENG H et al. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater. 2013, 9(12): 9351-9359 doi: 10.1016/j.actbio.2013.07.030
doi: 10.1016/j.actbio.2013.07.030 pmid: 3818500
[51]   KIM H S, YOO H S . In vitro and in vivo epidermal growth factor gene therapy for diabetic ulcers with electrospun fibrous meshes. Acta Biomater. 2013, 9(7): 7371-7380 doi: 10.1016/j.actbio.2013.03.018
doi: 10.1016/j.actbio.2013.03.018 pmid: 23528498
[52]   LOSI P, BRIGANTI E, ERRICO C et al. Fibrin-based scaffold incorporating VEGF-and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomater. 2013, 9(8): 7814-7821 doi: 10.1016/j.actbio.2013.04.019
doi: 10.1016/j.actbio.2013.04.019 pmid: 23603001
[53]   DAVEY G C, PATIL S B, O'LOUGHLIN A et al. Mesenchymal stem cell-based treatment for microvascular and secondary complications of diabetes mellitus. Front Endocrinol (Lausanne). 2014, 5: 86
[54]   FENG G, HAO D, CHAI J . Processing of CXCL12 impedes the recruitment of endothelial progenitor cells in diabetic wound healing. FEBS J. 2014, 281(22): 5054-5062 doi: 10.1111/febs.2014.281.issue-22
doi: 10.1111/febs.13043 pmid: 25211042
[55]   KUO Y R, WANG C T, CHENG J T et al. Adipose-derived stem cells accelerate diabetic wound healing through theinduction of autocrine and paracrine effects. Cell Transplant. 2016, 25(1): 71-81 doi: 10.3727/096368915X687921
[56]   FLECK C A, CHAKRAVARTHY D . Newer debridement methods for wound bed preparation. Adv Skin Wound Care. 2010, 23(7): 313-315 doi: 10.1097/01.ASW.0000383755.62091.1e
doi: 10.1097/01.ASW.0000383755.62091.1e pmid: 20562539
[57]   FALABELLA A F . Debridement and wound bed preparation. Dermatol Ther. 2006, 19(6): 317-325 doi: 10.1111/dth.2006.19.issue-6
doi: 10.1111/j.1529-8019.2006.00090.x pmid: 17199674
[58]   XIE X, MCGREGOR M, DENDUKURI N . The clinical effectiveness of negative pressure wound therapy:a systematic review. J Wound Care. 2010, 19(11): 490-495 doi: 10.12968/jowc.2010.19.11.79697
doi: 10.12968/jowc.2010.19.11.79697 pmid: 00031015
[59]   LI X, LIU J, LIU Y et al. Negative pressure wound therapy accelerates rats diabetic wound by promoting agenesis. Int J Clin Exp Med. 2015, 8(3): 3506-3513
[60]   AYDIN F, KAYA A, KARAPINAR L et al. IGF-1 increases with hyperbaric oxygen therapy and promotes wound healing in diabetic foot ulcers. J Diabetes Res. 2013, 2013: 567834
[61]   HUANG E T, MANSOURI J, MURAD M H et al. A clinical practice guideline for the use of hyperbaric oxygen therapy in the treatment of diabetic foot ulcers. Undersea Hyperb Med. 2015, 42(3): 205-247
[62]   NAVESC C . The diabetic foot:a historical overview and gaps in current treatment. Adv Wound Care (New Rochelle). 2016, 5(5): 191-197 doi: 10.1089/wound.2013.0518
doi: 10.1089/wound.2013.0518 pmid: 4827295
[63]   LIU Y, MIN D, BOLTON T et al. Increased matrix metalloproteinase-9 predicts poor wound healing in diabetic foot ulcers. Diabetes Care. 2009, 32(1): 117-119 doi: 10.2337/dc08-0763
doi: 10.2337/dc09-1394 pmid: 19875600
[64]   CHANG M . Restructuring of the extracellular matrix in diabetic wounds and healing:a perspective. Pharmacol Res. 2016, 107: 243-248 doi: 10.1016/j.phrs.2016.03.008
doi: 10.1016/j.phrs.2016.03.008 pmid: 27033051
[65]   GAO M, NGUYEN T T, SUCKOW M A et al. Acceleration of diabetic wound healing using a novel protease-anti-protease combination therapy. Proc Natl Acad Sci U S A. 2015, 112(49): 15226-15231 doi: 10.1073/pnas.1517847112
doi: 10.1073/pnas.1517847112 pmid: 26598687
[66]   CASTLEBERRY S A, ALMQUIST B D, LI W et al. Self-assembled wound dressings silence MMP-9 and improve diabetic wound healing in vivo. Adv Mater. 2016, 28(9): 1809-1817 doi: 10.1002/adma.201503565
doi: 10.1002/adma.201503565 pmid: 26695434
[67]   KIM H S, YOO H S . Matrix metalloproteinase-inspired suicidal treatments of diabetic ulcers with siRNA-decorated nanofibrous meshes. Gene Ther. 2013, 20(4): 378-385 doi: 10.1038/gt.2012.49
doi: 10.1038/gt.2012.49 pmid: 22717742
[68]   EMING S A, BRACHVOGEL B, ODORISIO T et al. Regulation of angiogenesis:wound healing as a model. Prog Histochem Cytochem. 2007, 42(3): 115-170 doi: 10.1016/j.proghi.2007.06.001
doi: 10.1016/j.proghi.2007.06.001 pmid: 17980716
[69]   RAM M, SINGH V, KUMAWAT S et al. Deferoxamine modulates cytokines and growth factors to accelerate cutaneous wound healing in diabetic rats. Eur J Pharmacol. 2015, 764: 9-21 doi: 10.1016/j.ejphar.2015.06.029
doi: 10.1016/j.ejphar.2015.06.029 pmid: 26101070
[70]   CHEN H, JIA P, KANG H et al. Upregulating Hif-1alpha byhydrogel nanofibrous scaffolds for rapidly recruiting angiogenesis relative cells in diabetic wound. Adv Healthc Mater. 2016, 5(8): 907-918 doi: 10.1002/adhm.201501018
doi: 10.1002/adhm.201501018 pmid: 26891197
[71]   LIU Z, BENARD O, SYEDA M M et al. Inhibition of prostaglandin transporter (PGT) promotes perfusion and vascularization and accelerates wound healing in non-diabetic and diabetic rats. PLoS One. 2015, 10(7): e0133615 doi: 10.1371/journal.pone.0133615
doi: 10.1371/journal.pone.0133615 pmid: 4521828
[72]   CHEN W, WU Y, LI L et al. Adenosine accelerates the healing of diabetic ischemic ulcers by improving autophagy of endothelial progenitor cells grown on a biomaterial. Sci Rep. 2015, 5: 11594 doi: 10.1038/srep11594
doi: 10.1038/srep11594 pmid: 26108983
[73]   BLAKYTNY R, JUDE E . The molecular biology of chronic wounds and delayed healing in diabetes. Diabet Med. 2006, 23(6): 594-608 doi: 10.1111/dme.2006.23.issue-6
doi: 10.1111/j.1464-5491.2006.01773.x pmid: 16759300
[74]   MOURA L I, DIAS A M, LEAL E C et al. Chitosan-based dressings loaded with neurotensin-an efficient strategy to improve early diabetic wound healing. Acta Biomater. 2014, 10(2): 843-857 doi: 10.1016/j.actbio.2013.09.040
doi: 10.1016/j.actbio.2013.09.040 pmid: 24121197
[75]   MOURA L I, DIAS A M, SUESCA E et al. Neurotensin-loaded collagen dressings reduce inflammation and improve wound healing in diabetic mice. Biochim Biophys Acta. 2014, 1842(1): 32-43 doi: 10.1016/j.bbadis.2013.10.009
doi: 10.1016/j.bbadis.2013.10.009 pmid: 24161538
[1] FENG Mengyu, ZHANG Taiping, ZHAO Yupei. Present situation and prospect of enhanced recovery after surgery in pancreatic surgery[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 666-674.
[2] XU Jingjing, TAN Yanbin, ZHANG Minming. Medical imaging in tumor precision medicine: opportunities and challenges[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 455-461.
[3] PAN Jingying, HE Mengye, KE Wei, HU Menglin, WANG Meifang, SHEN Peng. Advances on correlation of PET-CT findings with breast cancer molecular subtypes, treatment response and prognosis[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 473-480.
[4] ZHANG Siying, CHEN Feng. Research progress of CT/MRI parametric response map in precision evaluation of therapeutic response of cancer patients[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 468-472.
[5] PAN Yao, CHEN Jieyu, YU Risheng. Accurate imaging diagnosis and evaluation of pancreatic cancer[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 462-467.
[6] WANG Mengyan, ZHU Biao. Research progress on genes mutations related to sulfa drug resistance in Pneumocystis jirovecii[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 563-569.
[7] LI Yandie, LU Meiping. Progress on the study of NLRP3 inflammasome in autoinflammatory diseases of children[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 449-453.
[8] WANG Liya, QIAN Yeqing, JIN Fan. Research progress on the safety of offsprings conceived by assisted reproductive technology[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 279-284.
[9] YAN Kai, JIN Fan. Advances on prenatal diagnosis of birth defects associated with genetic disorders[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 227-232.
[10] TANG Minyue, ZHU Yimin. The involvement of galectin-1 in implantation and pregnancy maintenance at the maternal-fetal interface[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 321-327.
[11] FU Xiaohua, XU Weihai, QIU Shengchun, SHU Jing. Research progress on the relationship of brown adipose tissue with polycystic ovary syndrome[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 315-320.
[12] FU Yanling, ZHU Yimin. Potential clinical application of Kisspeptin in reproductive endocrinology[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 328-333.
[13] QIAN Yeqing, WANG Liya, LUO Yuqin, YAN Kai, DONG Minyue, JIN Fan. Advances in the application of high-throughput sequencing in clinical genetics[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 334-337.
[14] SHEN Dan, WANG Fangfang, JIANG Zhou, QU Fan. Long-term effects of polycystic ovary syndrome on the offspring[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 300-304.
[15] HE Yujie,PAN Jianping. Progress on mechanisms for pathogensto evade NOD-like receptor and Toll-like receptor signaling pathways[J]. J Zhejiang Univ (Med Sci), 2017, 46(2): 218-224.