Please wait a minute...
J Zhejiang Univ (Med Sci)  2017, Vol. 46 Issue (1): 92-96    DOI: 10.3785/j.issn.1008-9292.2017.02.14
Research progress on mechanism of Nix-mediated mitophagy
ZHENG Yanrong(),ZHANG Xiangnan,CHEN Zhong()
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML( 8 )   PDF(1026KB)
Export: BibTeX | EndNote (RIS)      


Autophagy is fundamental to maintain cellular homeostasis. As one kind of the most well-studied selective autophagy, autophagy of mitochondria (mitophagy) is crucial for the clearance of damaged mitochondria. Mitophagy dysfunction has been proved to be closely associated with many human diseases. Nix is a key protein for mitophagy during the maturation of reticulocytes. However, the detailed molecular mechanisms underlying Nix-mediated mitophagy are not fully understood. This article summarizes three possible working models of Nix in mitophagy induction. Firstly, Nix can interplay with Parkin, another important protein for mitophagy, to initiate mitophagy. Secondly, Nix can serve as a receptor for autophagy machinery by interacting with Atg8 family through its LIR motif. Finally, as a BH3-only protein, Nix can compete with Beclin-1 to bind other members of Bcl-2 family resulting in increased free Beclin-1 in cytosol, which further promotes autophagy flux.

Key wordsMitochondria      Autophagy      Microtubule-associated proteins      Review     
Received: 02 October 2016      Published: 06 July 2017
CLC:  R329.28  
Corresponding Authors: CHEN Zhong     E-mail:;
About author: CHEN Zhong, E-mail:
Cite this article:

ZHENG Yanrong,ZHANG Xiangnan,CHEN Zhong. Research progress on mechanism of Nix-mediated mitophagy. J Zhejiang Univ (Med Sci), 2017, 46(1): 92-96.

URL:     OR


线粒体自噬对于维持细胞稳态至关重要。近年的研究发现,Nix是参与介导线粒体自噬的一个重要蛋白,在许多生理、病理过程中扮演了重要的角色。但是,Nix介导线粒体自噬的具体机制尚不清楚,现主要存在以下三种假说:① Nix可能与另一线粒体自噬关键蛋白Parkin相互作用,共同介导线粒体自噬;② Nix作为一种自噬受体蛋白,通过自身的Atg8家族相互作用模体招募Atg8家族成员至损伤线粒体,导致线粒体移除;③ 作为Bcl-2家族成员,Nix可能与参与自噬泡生成的重要蛋白Beclin-1竞争结合Bcl-2或Bcl-XL,导致细胞质中游离的Beclin-1增加,进而诱导自噬发生。本文阐述了Nix介导线粒体自噬的可能机制,为以Nix作为靶点进行相关疾病的治疗策略提供理论依据。

关键词: 线粒体,  自噬,  微管相关蛋白质类,  综述 
Fig 1 Four possible working models of Nix-mediated mitophagy
[1]   LEVINE B, KLIONSKY D J . Development by self-digestion:molecular mechanisms and biological functions of autophagy. Dev Cell. 2004, 6(4): 463-477 doi: 10.1016/S1534-5807(04)00099-1
doi: 10.1016/S0305-4179(99)00126-6 pmid: 15068787
[2]   KIM I, RODRIGUEZ-ENRIQUEZ S, LEMASTERS J J . Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys. 2007, 462(2): 245-253 doi: 10.1016/
doi: 10.1016/ pmid: 17475204
[3]   YOULE R J, NARENDRA D P . Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011, 12(1): 9-14
[4]   CHEN Y, DORN G W . PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science. 2013, 340(6131): 471-475 doi: 10.1126/science.1231031
doi: 10.1126/science.1231031 pmid: 23620051
[5]   GEISLER S, HOLMSTR?M K M, SKUJAT D et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010, 12(2): 119-131 doi: 10.1038/ncb2012
[6]   MCLELLAND G L, SOUBANNIER V, CHEN C X et al. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 2014, 33(4): 282-295
[7]   DENISON M S, NAGY S R . Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol. 2003, 43: 309-334 doi: 10.1146/annurev.pharmtox.43.100901.135828
doi: 10.1146/annurev.pharmtox.43.100901.135828 pmid: 12540743
[8]   PAWLYK A C, GIASSON B I, SAMPATHU D M et al. Novel monoclonal antibodies demonstrate biochemical variation of brain parkin with age. J Biol Chem. 2003, 278(48): 48120-48128 doi: 10.1074/jbc.M306889200
doi: 10.1074/jbc.M306889200 pmid: 12972409
[9]   SCHWEERS R L, ZHANG J, RANDALL M S et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci U S A. 2007, 104(49): 19500-19505 doi: 10.1073/pnas.0708818104
[10]   CUCONATI A, WHITE E . Viral homologs of BCL-2:role of apoptosis in the regulation of virus infection. Genes Dev. 2002, 16(19): 2465-2478 doi: 10.1101/gad.1012702
doi: 10.1101/gad.1012702 pmid: 12368257
[11]   OHI N, TOKUNAGA A, TSUNODA H et al. A novel adenovirus E1B19K-binding protein B5 inhibits apoptosis induced by Nip3 by forming a heterodimer through the C-terminal hydrophobic region. Cell Death Differ. 1999, 6(4): 314-325 doi: 10.1038/sj.cdd.4400493
doi: 10.1038/sj.cdd.4400493 pmid: 10381623
[12]   MATSUSHIMA M, FUJIWARA T, TAKAHASHI E et al. Isolation, mapping, and functional analysis of a novel human cDNA (BNIP3L) encoding a protein homologous to human NIP3. Genes Chromosomes Cancer. 1998, 21(3): 230-235 doi: 10.1002/(ISSN)1098-2264
doi: 10.1002/(SICI)1098-2264(199803)21:33.0.CO;2-0 pmid: 9523198
[13]   IMAZU T, SHIMIZU S, TAGAMI S et al. Bcl-2/E1B 19 kDa-interacting protein 3-like protein (Bnip3L) interacts with bcl-2/Bcl-xL and induces apoptosis by altering mitochondrial membrane permeability. Oncogene. 1999, 18(32): 4523-4529 doi: 10.1038/sj.onc.1202722
doi: 10.1038/sj.onc.1202722 pmid: 10467396
[14]   KIM H, RAFIUDDIN-SHAH M, TU H C et al. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol. 2006, 8(12): 1348-1358 doi: 10.1038/ncb1499
[15]   KELEKAR A, THOMPSON C B . Bcl-2-family proteins:the role of the BH3 domain in apoptosis. Trends Cell Biol. 1998, 8(8): 324-330 doi: 10.1016/S0962-8924(98)01321-X
[16]   LAI J, FLANAGAN J, PHILLIPS W A et al. Analysis of the candidate 8p21 tumour suppressor, BNIP3L, in breast and ovarian cancer. Br J Cancer. 2003, 88(2): 270-276 doi: 10.1038/sj.bjc.6600674
doi: 10.1038/sj.bjc.6600674 pmid: 12610513
[17]   UNOKI M, NAKAMURA Y . EGR2 induces apoptosis in various cancer cell lines by direct transactivation of BNIP3L and BAK. Oncogene. 2003, 22(14): 2172-2185 doi: 10.1038/sj.onc.1206222
doi: 10.1038/sj.onc.1206222 pmid: 12687019
[18]   REAL P J, BENITO A, CUEVAS J et al. Blockade of epidermal growth factor receptors chemosensitizes breast cancer cells through up-regulation of Bnip3L. Cancer Res. 2005, 65(18): 8151-8157 doi: 10.1158/0008-5472.CAN-05-1134
doi: 10.1158/0008-5472.CAN-05-1134 pmid: 16166289
[19]   FEI P, WANG W, KIM S H et al. Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth. Cancer Cell. 2004, 6(6): 597-609 doi: 10.1016/j.ccr.2004.10.012
doi: 10.1016/j.ccr.2004.10.012 pmid: 15607964
[20]   WILFINGER N, AUSTIN S, SCHEIBER-MOJDEHKAR B et al. Novel p53-dependent anticancer strategy by targeting iron signaling and BNIP3L-induced mitophagy. Oncotarget. 2016, 7(2): 1242-1261
[21]   O'SULLIVAN T E, JOHNSON L R, KANG H H et al. BNIP3-and BNIP3L-mediated mitophagy promotes the generation of natural killer cell memory. Immunity. 2015, 43(2): 331-342 doi: 10.1016/j.immuni.2015.07.012
doi: 10.1016/j.immuni.2015.07.012 pmid: 26253785
[22]   GAO F, CHEN D, SI J et al. The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway. Hum Mol Genet. 2015, 24(9): 2528-2538 doi: 10.1093/hmg/ddv017
doi: 10.1093/hmg/ddv017 pmid: 25612572
[23]   MATSUDA N, SATO S, SHIBA K et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 2010, 189(2): 211-221 doi: 10.1083/jcb.200910140
doi: 10.4161/auto.6.7.13039 pmid: 20404107
[24]   SANDOVAL H, THIAGARAJAN P, DASGUPTA S K et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature. 2008, 454(7201): 232-235 doi: 10.1038/nature07006
doi: 10.1038/nature07006 pmid: 2570948
[25]   DING W X, NI H M, LI M et al. Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J Biol Chem. 2010, 285(36): 27879-27890 doi: 10.1074/jbc.M110.119537
[26]   KUBLI D A, YCAZA J E, GUSTAFSSON A B . Bnip3 mediates mitochondrial dysfunction and cell death through Bax and Bak. Biochem J. 2007, 405(3): 407-415 doi: 10.1042/BJ20070319
doi: 10.1016/j.physc.2008.09.004 pmid: 17447897
[27]   KIRKIN V, MCEWAN D G, NOVAK I et al. A role for ubiquitin in selective autophagy. Mol Cell. 2009, 34(3): 259-269 doi: 10.1016/j.molcel.2009.04.026
doi: 10.1016/j.molcel.2009.04.026 pmid: 19450525
[28]   NOVAK I, KIRKIN V, MCEWAN D G et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 2010, 11(1): 45-51 doi: 10.1038/embor.2009.256
doi: 10.1038/embor.2009.256 pmid: 20010802
[29]   ZHANG J, LOYD M R, RANDALL M S et al. A short linear motif in BNIP3L (NIX) mediates mitochondrial clearance in reticulocytes. Autophagy. 2012, 8(9): 1325-1332 doi: 10.4161/auto.20764
[30]   ZHU Y, MASSEN S, TERENZIO M et al. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J Biol Chem. 2013, 288(2): 1099-1113 doi: 10.1074/jbc.M112.399345
doi: 10.1074/jbc.M112.399345 pmid: 3542995
[31]   LIU L, FENG D, CHEN G et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol. 2012, 14(2): 177-185 doi: 10.1038/ncb2422
[32]   AOKI Y, KANKI T, HIROTA Y et al. Phosphorylation of Serine 114 on Atg32 mediates mitophagy. Mol Biol Cell. 2011, 22(17): 3206-3217 doi: 10.1091/mbc.E11-02-0145
doi: 10.1091/mbc.E11-02-0145 pmid: 21757540
[33]   NARENDRA D P, JIN S M, TANAKA A et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010, 8(1): e1000298 doi: 10.1371/journal.pbio.1000298
pmid: 2811155
[34]   CAO Y, KLIONSKY D J . Physiological functions of Atg6/Beclin 1:a unique autophagy-related protein. Cell Res. 2007, 17(10): 839-849 doi: 10.1038/cr.2007.78
doi: 10.1038/cr.2007.78 pmid: 17893711
[35]   YORIMITSU T, KLIONSKY D J . Autophagy:molecular machinery for self-eating. Cell Death Differ. 2005, 12(Suppl 2): 1542-1552
[36]   PATTINGRE S, TASSA A, QU X et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005, 122(6): 927-939 doi: 10.1016/j.cell.2005.07.002
doi: 10.1016/j.cell.2005.07.002 pmid: 16179260
[1] FENG Mengyu, ZHANG Taiping, ZHAO Yupei. Present situation and prospect of enhanced recovery after surgery in pancreatic surgery[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 666-674.
[2] XU Jingjing, TAN Yanbin, ZHANG Minming. Medical imaging in tumor precision medicine: opportunities and challenges[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 455-461.
[3] PAN Jingying, HE Mengye, KE Wei, HU Menglin, WANG Meifang, SHEN Peng. Advances on correlation of PET-CT findings with breast cancer molecular subtypes, treatment response and prognosis[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 473-480.
[4] ZHANG Siying, CHEN Feng. Research progress of CT/MRI parametric response map in precision evaluation of therapeutic response of cancer patients[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 468-472.
[5] PAN Yao, CHEN Jieyu, YU Risheng. Accurate imaging diagnosis and evaluation of pancreatic cancer[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 462-467.
[6] WANG Mengyan, ZHU Biao. Research progress on genes mutations related to sulfa drug resistance in Pneumocystis jirovecii[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 563-569.
[7] ZHANG Binbin, WU Meiling, LIU Luna, ZHU Yangbin, KAI Jiejing, ZENG Linghui. Inhibiting mammalian target of rapamycin signaling pathway improves cognitive function in mice with chronic cerebral ischemia[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 405-412.
[8] LI Yandie, LU Meiping. Progress on the study of NLRP3 inflammasome in autoinflammatory diseases of children[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 449-453.
[9] ZHENG Jing, ZHANG Yu, HONG Fang, YANG Jianbin, TONG Fan, MAO Huaqing, HUANG Xiaolei, ZHOU Xuelian, YANG Rulai, ZHAO Zhengyan, HUANG Xinwen. Screening for fatty acid oxidation disorders of newborns in Zhejiang province:prevalence, outcome and follow-up[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 248-255.
[10] WANG Liya, QIAN Yeqing, JIN Fan. Research progress on the safety of offsprings conceived by assisted reproductive technology[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 279-284.
[11] YAN Kai, JIN Fan. Advances on prenatal diagnosis of birth defects associated with genetic disorders[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 227-232.
[12] TANG Minyue, ZHU Yimin. The involvement of galectin-1 in implantation and pregnancy maintenance at the maternal-fetal interface[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 321-327.
[13] FU Xiaohua, XU Weihai, QIU Shengchun, SHU Jing. Research progress on the relationship of brown adipose tissue with polycystic ovary syndrome[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 315-320.
[14] FU Yanling, ZHU Yimin. Potential clinical application of Kisspeptin in reproductive endocrinology[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 328-333.
[15] QIAN Yeqing, WANG Liya, LUO Yuqin, YAN Kai, DONG Minyue, JIN Fan. Advances in the application of high-throughput sequencing in clinical genetics[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 334-337.