|
|
Artificial intelligence technology in cardiac auscultation screening for congenital heart disease: present and future |
XU Weize( ),YU Kai,XU Jiajun,YE Jingjing,LI Haomin,SHU Qiang*( ) |
The Heart Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou 310052, China |
|
|
Abstract The electronic stethoscope combined with artificial intelligence (AI) technology has realized the digital acquisition of heart sounds and intelligent identification of congenital heart disease, which provides objective basis for heart sound auscultation and improves the accuracy of congenital heart disease diagnosis. At the present stage, the AI based cardiac auscultation technique mainly focuses on the research of AI algorithms, and the researchers have designed and summarized a variety of effective algorithms based on the characteristics of cardiac audio data, among which the mel-frequency cepstral coefficients (MFCC) is the most effective one, and widely used in the cardiac auscultation. However, the current cardiac sound analysis techniques are based on specific data sets, and have not been validated in clinic, so the performance of algorithms need to be further verified. The lack of heart sound data, especially the high-quality, standardized, publicly available heart sound database with disease labeling, further restricts the development of heart sound diagnostic analysis and its application in screening. Therefore, expert consensus is necessary in establishing an authoritative heart sound database and standardizing the heart sound auscultation screening process for congenital heart disease. This paper provides an overview of the research and application status of auscultation algorithm and hardware equipment based on AI in auscultation screening of congenital heart disease, and puts forward the problems to be solved in clinical application of AI auscultation screening technology.
|
Received: 27 August 2020
Published: 19 November 2020
|
|
Corresponding Authors:
SHU Qiang
E-mail: 120heart@zju.edu.cn;shuqiang@zju.edu.cn
|
先天性心脏病心音听诊筛查的人工智能技术应用现状
近年来,电子听诊器结合人工智能技术实现了心音的数字化采集和先天性心脏病的智能识别,为心音听诊提供了客观依据,提高了先天性心脏病诊断的准确率。现阶段基于人工智能技术的智能听诊技术主要侧重于人工智能算法的研究,国内外学者也针对心音音频数据的特点设计总结了多种有效算法,其中梅尔频率倒谱系数(MFCC)是最常用且有效的心音特征,被广泛应用于智能听诊技术中。然而,当前心音智能听诊技术均基于筛选的特定数据集实现,并且尚未在实际临床环境中基于大样本进行实验验证,因此各个算法的实际临床应用表现尚待进一步验证。心音数据匮乏,特别是高质量、标准化、带疾病标注且公开的心音数据库的缺失,进一步制约了心音智能诊断分析技术的发展和听诊筛查的应用。因此,相关医疗单位应当组织有关专家共同建立先天性心脏病心音听诊筛查的专家共识和标准化心音听诊筛查流程,并以此建立权威心音数据库。本文就现阶段基于人工智能的听诊算法和硬件设备在先天性心脏病听诊筛查中的研究及应用进行综述,提出人工智能心音听诊筛查技术在临床应用中有待解决的问题。
关键词:
心脏缺损, 先天性,
新生儿筛查,
心脏听诊,
人工智能
|
|
[1] |
黄国英 . 我国开展新生儿先天性心脏病筛查的重要性[J]. 中华儿科杂志, 2017, 55 (4): 241- 243 HUANG Guoying . Importance of neonatal screening for congenital heart disease in China[J]. Chinese Journal of Pediatrics, 2017, 55 (4): 241- 243
doi: 10.3760/cma.j.issn.0578-1310.2017.04.001
|
|
|
[2] |
周爱卿 . 先天性心脏病诊断思路和检查方法选择[J]. 诊断学理论与实践, 2006, 5 (3): 276- 278 ZHOU Aiqing . Thinking and selection of methods in diagnosis of congenital heart disease[J]. Journal of Diagnostics:Concepts & Practice, 2006, 5 (3): 276- 278
doi: 10.3969/j.issn.1671-2870.2006.03.029
|
|
|
[3] |
郭腾飞 . 心音信号的测量与处理[J]. 南北桥, 2010, (9): 44- 46 GUO Tengfei . Heart sounds signal's measurement and processing[J]. North South Bridge, 2010, (9): 44- 46
doi: 10.3969/j.issn.1672-0407.2010.09.020
|
|
|
[4] |
SPRINGER D B , TARASSENKO L , CLIFFORD G D . Logistic Regression-HSMM-based heart sound segmentation[J]. IEEE Trans Biomed Eng, 2016, 63 (4): 822- 832
doi: 10.1109/TBME.2015.2475278
|
|
|
[5] |
谢梅兰.心脏杂音分级量化研究及心脏能量分析[D].重庆: 重庆大学, 2010. XIE Meilan. The study of heart murmur grading quantification and cardiac energy[D]. Chongqing: Chongqing University, 2010. (in Chinese)
|
|
|
[6] |
GHOSH S K , PONNALAGU R N , TRIPATHY R K et al. Automated detection of heart valve diseases using chirplet transform and multiclass composite classifier with PCG signals[J]. Comput Biol Med, 2020, 118 103632
doi: 10.1016/j.compbiomed.2020.103632
|
|
|
[7] |
DENG M , MENG T , CAO J et al. Heart sound classification based on improved MFCC features and convolutional recurrent neural networks[J]. Neural Netw, 2020, 130 22- 32
doi: 10.1016/j.neunet.2020.06.015
|
|
|
[8] |
谭朝文, 王威廉, 宗容 et al. 卷积神经网络应用于先心病心音信号分类研究[J]. 计算机工程与应用, 2019, 55 (12): 174- 180 TAN Zhaowen , WANG Weilian , ZONG Rong et al. Research on classification of congenital heart disease heart sound signal using convolutional neural network[J]. Computer Engineering and Application, 2019, 55 (12): 174- 180
doi: 10.3778/j.issn.1002-8331.1807-0115
|
|
|
[9] |
谭朝文, 王威廉, 宗容 et al. 基于卷积神经网络的先心病心音信号分类算法[J]. 生物医学工程学杂志, 2019, 36 (5): 728- 736, 744 TAN Zhaowen , WANG Weilian , ZONG Rong et al. Classification of heart sound signals in congenital heart disease based on convolutional neural network[J]. Journal of Biomedical Engineering, 2019, 36 (5): 728- 736, 744
doi: 10.7507/1001-5515.201806031
|
|
|
[10] |
ZHU L L , PAN J H , SHI J H et al. Research on recognition of CHD heart sound using MFCC and LPCC[J]. JPhCS, 2019, 1169 (1): 012011
doi: 10.1088/1742-6596/1169/1/012011
|
|
|
[11] |
陈洁, 侯海良, 罗良才 et al. 基于双门限的第一、第二心音自动识别方法[J]. 计算机工程, 2012, 38 (16): 174- 177, 181 CHEN Jie , HOU Hailiang , LUO Liangcai et al. Automatic identification method for the first and second heart sound based on double-threshold[J]. Computer Engineering, 2012, 38 (16): 174- 177, 181
doi: 10.3969/j.issn.1000-3428.2012.16.045
|
|
|
[12] |
房玉, 江钟伟, 王海滨 et al. 一种先天性心脏病杂音分割及分析方法[J]. 北京生物医学工程, 2018, 37 (2): 151- 156 FANG Yu , JIANG Zhongwei , WANG Haibin et al. A heart murmur segmentation and analysis method for congenital heart disease[J]. Beijing Biomedical Engineering, 2018, 37 (2): 151- 156
doi: 10.3969/j.issn.1002-3208.2018.02.007
|
|
|
[13] |
侯雷静, 郭婷婷, 孙燕 et al. 面向心音分割的个性化高斯混合建模方法[J]. 声学学报, 2019, 44 (1): 22- 29 HOU Leijing , GUO Tingting , SUN Yan et al. A personalized Gaussian mixture model modeling method for heart sound segmentation[J]. Acta Acustica, 2019, 44 (1): 22- 29
doi: 10.15949/j.cnki.0371-0025.2019.01.003
|
|
|
[14] |
FERNANDO T , GHAEMMAGHAMI H , DENMAN S et al. Heart sound segmentation using bidirectional LSTMs with attention[J]. IEEE J Biomed Health Inform, 2020, 24 (6): 1601- 1609
doi: 10.1109/JBHI.2019.2949516
|
|
|
[15] |
AZIZ S , KHAN M U , ALHAISONI M et al. Phonocardiogram signal processing for automatic diagnosis of congenital heart disorders through fusion of temporal and cepstral features[J]. Sensors (Basel), 2020, 20 (13):
doi: 10.3390/s20133790
|
|
|
[16] |
SON G Y , KWON S . Classification of heart sound signal using multiple features[J]. Applied Sciences, 2018, 8 (12): 2344
doi: 10.3390/app8122344
|
|
|
[17] |
PATIDAR S , PACHORI R B , GARG N . Automatic diagnosis of septal defects based on tunable-Q wavelet transform of cardiac sound signals[J]. Expert Syst Appl, 2015, 42 (7): 3315- 3326
doi: 10.1016/j.eswa.2014.11.046
|
|
|
[18] |
OH S L , JAHMUNAH V , OOI C P et al. Classification of heart sound signals using a novel deep WaveNet model[J]. Comput Methods Programs Biomed, 2020, 196 105604
doi: 10.1016/j.cmpb.2020.105604
|
|
|
[19] |
NILANON T, YAO J, HAO J, et al. Normal/abnormal heart sound recordings classification using convolutional neural network[C]. IEEE: 2016 Computing in Cardiology Conference (CinC), 2016: 585-588.
|
|
|
[20] |
SUJADEVI V G, SOMAN K P, VINAYAKUMAR R, et al. Deep models for phonocardiography (PCG) classification[C]. IEEE: 2017 International Conference on Intelligent Communication and Computational Techniques (ICCT), 2017: 211-216. DOI: 10.1109/INTELCCT.2017.8324047.
|
|
|
[21] |
LIU C , SPRINGER D , LI Q et al. An open access database for the evaluation of heart sound algorithms[J]. Physiol Meas, 2016, 37 (12): 2181- 2213
doi: 10.1088/0967-3334/37/12/2181
|
|
|
[22] |
SUN S , JIANG Z , WANG H et al. Automatic moment segmentation and peak detection analysis of heart sound pattern via short-time modified Hilbert transform[J]. Comput Methods Programs Biomed, 2014, 114 (3): 219- 230
doi: 10.1016/j.cmpb.2014.02.004
|
|
|
[23] |
SUN S . An innovative intelligent system based on automatic diagnostic feature extraction for diagnosing heart diseases[J]. Knowl-based Syst, 2015, 75 224- 238
doi: 10.1016/j.knosys.2014.12.001
|
|
|
[24] |
PATIDAR S , PACHORI R B . Segmentation of cardiac sound signals by removing murmurs using constrained tunable-Q wavelet transform[J]. Biomed Signal Proces, 2013, 8 (6): 559- 567
doi: 10.1016/j.bspc.2013.05.004
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|