|
|
Progress on axon regeneration in model organisms |
JIANG Peiran( ),WANG Zhiping*( ) |
School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China |
|
|
Abstract Different from neurons in the peripheral nervous system, mature neurons in the mammalian central nervous system often fail to regenerate after injury. Recent studies have found that calcium transduction, injury signaling, mitochondrial transportation, cytoskeletal remodeling and protein synthesis play essential roles in axon regeneration. Firstly, axon injury increases the intracellular concentration of calcium, and initiates the injury signaling pathways including cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and dual leucine kinase (DLK), which are found to promote axon regeneration in multiple animal injury models. The second step for axonal regrowth is to rebuild growth cones. Overexpressing proteins that promote dynamics of microtubules and actin filaments is beneficial for the reassembly of cytoskeletons and initiation of new growth cones. Thirdly, mitochondria, the power factory for cells, also play important roles in growth cone formation and axonal extension. The last but not the least important step is the regulation of gene transcription and protein translation to sustain the regrowth of axons. This review summarizes important findings revealing the functions and mechanisms of these biological progresses.
|
Received: 20 May 2020
Published: 27 September 2020
|
|
Corresponding Authors:
WANG Zhiping
E-mail: peiranjiang@zju.edu.cn;z4wang@zju.edu.cn
|
模式生物神经轴突再生的研究进展
与外周神经系统的神经元不同,中枢神经系统中成熟的神经元往往无法实现损伤后再生。近期,有研究发现钙离子传导损伤信号、线粒体运输、细胞骨架重构和蛋白质合成在轴突再生中发挥重要的功能。神经元损伤发生后,细胞内钙离子浓度升高,通过钙离子介导的环腺苷酸(cAMP)-蛋白激酶A(PKA)信号通路活化可激活下游双亮氨酸激酶(DLK),在多种动物损伤模型中促进轴突再生。轴突再生需要生长锥的重构,这一进程需要细胞骨架的有序组装,在损伤处表达特定促进微管和微丝聚合的基因可有效促进生长锥的重构。此外,负责供能的线粒体也会影响生长锥的重构和轴突再生能力。最后,研究还发现多个调控基因表达与蛋白合成的通路可促进轴突再生。本综述将重点概括这些对轴突再生有重要作用的生理过程和分子机制。
关键词:
轴突,
再生,
线粒体运输,
模式生物,
综述
|
|
[1] |
SHINN E, PATE A, PINTO F, et al. Long-term outcomes after mild traumatic brain injury[J/OL]. J Am Coll Surgeons, 2014, 219(4, Supplement): e144-e145. DOI: 10.1016/j.jamcollsurg.2014.07.775.
|
|
|
[2] |
HE Z , JIN Y . Intrinsic control of axon regeneration[J]. Neuron, 2016, 90 (3): 437- 451
doi: 10.1016/j.neuron.2016.04.022
|
|
|
[3] |
HAMMARLUND M , JIN Y . Axon regeneration in C. elegans[J]. Curr Opin Neurobiol, 2014, 27 199- 207
doi: 10.1016/j.conb.2014.04.001
|
|
|
[4] |
CHEN L , WANG Z , GHOSH-ROY A et al. Axon regeneration pathways identified by systematic genetic screening in C. elegans[J]. Neuron, 2011, 71 (6): 1043- 1057
doi: 10.1016/j.neuron.2011.07.009
|
|
|
[5] |
EDWARDS T J , HAMMARLUND M . Syndecan promotes axon regeneration by stabilizing growth cone migration[J]. Cell Rep, 2014, 8 (1): 272- 283
doi: 10.1016/j.celrep.2014.06.008
|
|
|
[6] |
QIU J , CAI D , DAI H et al. Spinal axon regeneration induced by elevation of cyclic AMP[J]. Neuron, 2002, 34 (6): 895- 903
doi: 10.1016/S0896-6273(02)00730-4
|
|
|
[7] |
YAN D , WU Z , CHISHOLM A D et al. The DLK-1 kinase promotes mRNA stability and local translation in C. elegans synapses and axon regeneration[J]. Cell, 2009, 138 (5): 1005- 1018
doi: 10.1016/j.cell.2009.06.023
|
|
|
[8] |
QIU J , CAI D , DAI H et al. Spinal axon regeneration induced by elevation of cyclic AMP[J]. Neuron, 2002, 34 (6): 895- 903
doi: 10.1016/S0896-6273(02)00730-4
|
|
|
[9] |
GHOSH-ROY A , WU Z , GONCHAROV A et al. Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase[J]. J Neurosci, 2010, 30 (9): 3175- 3183
doi: 10.1523/JNEUROSCI.5464-09.2010
|
|
|
[10] |
YAN D , WU Z , CHISHOLM A D et al. The DLK-1 kinase promotes mRNA stability and local translation in C. elegans synapses and axon regeneration[J]. Cell, 2009, 138 (5): 1005- 1018
doi: 10.1016/j.cell.2009.06.023
|
|
|
[11] |
GHOSH-ROY A , WU Z , GONCHAROV A et al. Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase[J]. J Neurosci, 2010, 30 (9): 3175- 3183
doi: 10.1523/JNEUROSCI.5464-09.2010
|
|
|
[12] |
PEARSE D D , PEREIRA F C , MARCILLO A E et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury[J]. Nat Med, 2004, 10 (6): 610- 616
doi: 10.1038/nm1056
|
|
|
[13] |
HAO Y , FREY E , YOON C et al. An evolutionarily conserved mechanism for cAMP elicited axonal regeneration involves direct activation of the dual leucine zipper kinase DLK[J]. Elife, 2016, 5
doi: 10.7554/eLife.14048
|
|
|
[14] |
NIKOLAEVA M A , MUKHERJEE B , STYS P K . Na+-dependent sources of intra-axonal Ca2+ release in rat optic nerve during in vitro chemical ischemia[J]. J Neurosci, 2005, 25 (43): 9960- 9967
doi: 10.1523/JNEUROSCI.2003-05.2005
|
|
|
[15] |
GIROUARD M P , BUENO M , JULIAN V et al. The molecular interplay between axon degeneration and regeneration[J]. Dev Neurobiol, 2018, 78 (10): 978- 990
doi: 10.1002/dneu.22627
|
|
|
[16] |
BROWN M C , LUNN E R , PERRY V H . Consequences of slow Wallerian degeneration for regenerating motor and sensory axons[J]. J Neurobiol, 1992, 23 (5): 521- 536
doi: 10.1002/neu.480230507
|
|
|
[17] |
WATKINS T A , WANG B , HUNTWORK-RODRIGUEZ S et al. DLK initiates a transcriptional program that couples apoptotic and regenerative responses to axonal injury[J]. Proc Natl Acad Sci U S A, 2013, 110 (10): 4039- 4044
doi: 10.1073/pnas.1211074110
|
|
|
[18] |
NIMMERJAHN A , KIRCHHOFF F , HELMCHEN F . Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo[J]. Science, 2005, 308 (5726): 1314- 1318
doi: 10.1126/science.1110647
|
|
|
[19] |
NEUMANN H , KOTTER M R , FRANKLIN R J . Debris clearance by microglia:an essential link between degeneration and regeneration[J]. Brain, 2009, 132 (Pt 2): 288- 295
doi: 10.1093/brain/awn109
|
|
|
[20] |
HILLA A M , DIEKMANN H , FISCHER D . Microglia are irrelevant for neuronal degeneration and axon regeneration after acute injury[J]. J Neurosci, 2017, 37 (25): 6113- 6124
doi: 10.1523/JNEUROSCI.0584-17.2017
|
|
|
[21] |
CONDE C , CáCERES A . Microtubule assembly, organization and dynamics in axons and dendrites[J]. Nat Rev Neurosci, 2009, 10 (5): 319- 332
doi: 10.1038/nrn2631
|
|
|
[22] |
SCHIFF P B , HORWITZ S B . Taxol stabilizes microtubules in mouse fibroblast cells[J]. Proc Natl Acad Sci U S A, 1980, 77 (3): 1561- 1565
doi: 10.1073/pnas.77.3.1561
|
|
|
[23] |
YIU G , HE Z . Glial inhibition of CNS axon regeneration[J]. Nat Rev Neurosci, 2006, 7 (8): 617- 627
doi: 10.1038/nrn1956
|
|
|
[24] |
SCHWAB M E . Nogo and axon regeneration[J]. Curr Opin Neurobiol, 2004, 14 (1): 118- 124
doi: 10.1016/j.conb.2004.01.004
|
|
|
[25] |
SENGOTTUVEL V , LEIBINGER M , PFREIMER M et al. Taxol facilitates axon regeneration in the mature CNS[J]. J Neurosci, 2011, 31 (7): 2688- 2699
doi: 10.1523/JNEUROSCI.4885-10.2011
|
|
|
[26] |
RUSCHEL J , HELLAL F , FLYNN K C et al. Axonal regeneration. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury[J]. Science, 2015, 348 (6232): 347- 352
doi: 10.1126/science.aaa2958
|
|
|
[27] |
HE M , DING Y , CHU C et al. Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury[J]. Proc Natl Acad Sci U S A, 2016, 113 (40): 11324- 11329
doi: 10.1073/pnas.1611282113
|
|
|
[28] |
MATAMOROS A J , TOM V J , WU D et al. Knockdown of fidgetin improves regeneration of injured axons by a microtubule-based mechanism[J]. J Neurosci, 2019, 39 (11): 2011- 2024
doi: 10.1523/JNEUROSCI.1888-18.2018
|
|
|
[29] |
PERIS L , WAGENBACH M , LAFANECHèRE L et al. Motor-dependent microtubule disassembly driven by tubulin tyrosination[J]. J Cell Biol, 2009, 185 (7): 1159- 1166
doi: 10.1083/jcb.200902142
|
|
|
[30] |
CHO Y , CAVALLI V . HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration[J]. EMBO J, 2012, 31 (14): 3063- 3078
doi: 10.1038/emboj.2012.160
|
|
|
[31] |
BOMZE H M , BULSARA K R , ISKANDAR B J et al. Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons[J]. Nat Neurosci, 2001, 4 (1): 38- 43
doi: 10.1038/82881
|
|
|
[32] |
CARTONI R , NORSWORTHY M W , BEI F et al. The mammalian-specific protein armcx1 regulates mitochondrial transport during axon regeneration[J]. Neuron, 2016, 92 (6): 1294- 1307
doi: 10.1016/j.neuron.2016.10.060
|
|
|
[33] |
TEDESCHI A , DUPRAZ S , CURCIO M et al. ADF/Cofilin-mediated actin turnover promotes axon regeneration in the adult CNS[J]. Neuron, 2019, 103 (6): 1073- 1085
doi: 10.1016/j.neuron.2019.07.007
|
|
|
[34] |
LI Z , OKAMOTO K , HAYASHI Y et al. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses[J]. Cell, 2004, 119 (6): 873- 887
doi: 10.1016/j.cell.2004.11.003
|
|
|
[35] |
MORRIS R L , HOLLENBECK P J . The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth[J]. J Cell Sci, 1993, 104 (Pt 3): 917- 927
|
|
|
[36] |
BELIN S , NAWABI H , WANG C et al. Injury-induced decline of intrinsic regenerative ability revealed by quantitative proteomics[J]. Neuron, 2015, 86 (4): 1000- 1014
doi: 10.1016/j.neuron.2015.03.060
|
|
|
[37] |
ZHOU B , YU P , LIN M Y et al. Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits[J]. J Cell Biol, 2016, 214 (1): 103- 119
doi: 10.1083/jcb.201605101
|
|
|
[38] |
WU D , LEE S , LUO J et al. Intraneural injection of ATP stimulates regeneration of primary sensory axons in the spinal cord[J]. J Neurosci, 2018, 38 (6): 1351- 1365
doi: 10.1523/JNEUROSCI.1660-17.2017
|
|
|
[39] |
PARK K K , LIU K , HU Y et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway[J]. Science, 2008, 322 (5903): 963- 966
doi: 10.1126/science.1161566
|
|
|
[40] |
DU K , ZHENG S , ZHANG Q et al. Pten deletion promotes regrowth of corticospinal tract axons 1 year after spinal cord injury[J]. J Neurosci, 2015, 35 (26): 9754- 9763
doi: 10.1523/JNEUROSCI.3637-14.2015
|
|
|
[41] |
SUN F , PARK K K , BELIN S et al. Sustained axon regeneration induced by co-deletion of PTEN and SOCS3[J]. Nature, 2011, 480 (7377): 372- 375
doi: 10.1038/nature10594
|
|
|
[42] |
YANG L , MIAO L , LIANG F et al. The mTORC1 effectors S6K1 and 4E-BP play different roles in CNS axon regeneration[J]. Nat Commun, 2014, 5 5416
doi: 10.1038/ncomms6416
|
|
|
[43] |
JIN D , LIU Y , SUN F et al. Restoration of skilled locomotion by sprouting corticospinal axons induced by co-deletion of PTEN and SOCS3[J]. Nat Commun, 2015, 6 8074
doi: 10.1038/ncomms9074
|
|
|
[44] |
SMITH P D , SUN F , PARK K K et al. SOCS3 deletion promotes optic nerve regeneration in vivo[J]. Neuron, 2009, 64 (5): 617- 623
doi: 10.1016/j.neuron.2009.11.021
|
|
|
[45] |
MA J J , JU X , XU R J et al. Telomerase reverse transcriptase and p53 regulate mammalian peripheral nervous system and CNS axon regeneration downstream of c-Myc[J]. J Neurosci, 2019, 39 (46): 9107- 9118
doi: 10.1523/JNEUROSCI.0419-19.2019
|
|
|
[46] |
ZHANG Y , WILLIAMS P R , JACOBI A et al. Elevating growth factor responsiveness and axon regeneration by modulating presynaptic inputs[J]. Neuron, 2019, 103 (1): 39- 51
doi: 10.1016/j.neuron.2019.04.033
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|