|
|
Comparative analysis of structural characteristics and epitopes in S proteins between SARS-CoV-2 and SARS-CoV |
LUN Yongzhi*( ),LIU Ben,DONG Wen,SUN Jie,PAN Linghong |
Key Laboratory of Medical Microecology(Putian University), Fujian Province University, School of Pharmacy and Medical Technology, Putian University, Putian 351100, Fujian Province, China |
|
|
Abstract Objective: To provide data support for the study of pathogenic mechanism of SARS-CoV-2 at the molecular level, and provide suitable candidate targets for vaccine, antibody and drug research and development through comparative analysis for structural characteristics and epitopes of S protein of SARS-CoV-2 and SARS-CoV. Methods: Based on the reference sequences of S protein, physical and chemical properties, hydrophobicity, signal peptide, transmembrane region, domain, secondary structure, tertiary structure analysis and antigenic epitopes prediction were carried out. Meanwhile, the tissue expression, related pathways and reactome pathways of angiotensis Ⅰ converting enzyme 2 (ACE2) and C-type lectin domain family 4 member M (CLEC4M) receptors were analyzed. Results: The amino acid sequence of S protein of SARS-CoV-2 and SARS-CoV has a 75.80% consistency. The structural characteristics of the two coronaviruses are highly consistent, but the secondary structure and tertiary structure of SARS-CoV-2 is not as obvious as SARS-CoV. ACE2 and CLEC4M are expressed in alimentary system, heart, kidney, lung and placenta. The main related the pathways of renin-angiotensin system, protein digestion and absorption pathway, and the reactome pathways of metabolism of angiotensinogen to angiotensins, GPCR ligand binding, are related to typical symptoms of coronavirus disease 2019 induced by SARS-CoV-2. Three pairs of highly or completely homologous epitopes of S protein were obtained. The 600-605, 695-703 and 888-896 amino acid residues in SARS-CoV-2 were highly homologous with 586-591, 677-685 and 870-878 amino acid residues in SARS-CoV, respectively. Conclusions: The similarity of S protein of SARS-CoV-2 and SARS-CoV determines that they have similar infection patterns and clinical manifestations. The candidate epitopes with high reliability can provide reference for virus diagnosis and vaccine development.
|
Received: 16 April 2020
Published: 10 June 2020
|
|
Corresponding Authors:
LUN Yongzhi
E-mail: lunyz@163.com
|
两种严重急性呼吸综合征冠状病毒S蛋白结构特征及抗原表位比较
目的: 通过严重急性呼吸综合征冠状病毒(SARS-CoV)-2与SARS-CoV S蛋白结构特征及抗原表位的比较分析,从分子水平为SARS-CoV-2致病机制研究提供数据支持,并为疫苗、抗体及药物研发寻找合适的候选靶点。方法: 利用生物信息学方法和工具,基于S蛋白参考序列进行理化性质、疏水性、信号肽、跨膜区、结构域、二级结构、三级结构分析及抗原表位预测,同时对受体血管紧张素转换酶2(ACE2)、C型凝集素(CLEC4M)的组织表达及关联通路、途径进行分析。结果: SARS-CoV-2、SARS-CoV S蛋白氨基酸序列一致性为75.80%,两者结构特征具有较高一致性,但SARS-CoV-2高级结构特征不如SARS-CoV明显。受体ACE2、CLEC4M在消化系统及心脏、肾脏、肺、胎盘中均有表达,主要关联的肾素-血管紧张素系统、蛋白质消化吸收通路及血管紧张素前体转化、G蛋白偶联受体(GPCR)配体结合途径与2019冠状病毒病典型症状相关。分析获得S蛋白三对高度或完全同源的抗原表位,即SARS-CoV-2 S蛋白第600~605位氨基酸残基与SARS-CoV第586~591位高度一致,SARS-CoV-2 S蛋白第695~703位、第888~896位氨基酸残基分别与SARS-CoV第677~685位、第870~878位高度或完全一致。结论: SARS-CoV-2与SARS-CoV S蛋白结构上的相似性决定了两者具有相近的感染模式和临床表现。筛选获得的高可信度的SARS-CoV-2候选抗原表位可为病毒诊断和疫苗研制提供参考。
关键词:
严重急性呼吸综合征冠状病毒2,
S蛋白,
结构特征,
抗原表位
|
|
[1] |
HUI D , ZUMLA A . Severe acute respiratory syndrome:historical, epidemiologic, and clinical features[J]. Infect Dis Clin North Am, 2019, 33 (4): 869- 889
doi: 10.1016/j.idc.2019.07.001
|
|
|
[2] |
赵琪, 饶子和 . 冠状病毒蛋白结构基因组研究进展[J]. 生物物理学报, 2010, 26 (1): 14- 25 ZHAO Qi , RAO Zihe . Progress of structural genomics study on coronaviruse[J]. Acta Biophysica Sinica, 2010, 26 (1): 14- 25
|
|
|
[3] |
沈媚, 陈冰清, 于瑞嵩 et al. 冠状病毒S蛋白及其受体的结构和功能[J]. 微生物学通报, 2017, 44 (10): 2452- 2462 SHEN Mei , CHEN Bingqing , YU Ruisong et al. Structure and function of coronaviral S proteins and their receptors[J]. Microbiology China, 2017, 44 (10): 2452- 2462
doi: 10.13344/j.microbiol.china.170256
|
|
|
[4] |
LI F . Receptor recognition mechanisms of coronaviruses:a decade of structural studies[J]. J Virol, 2015, 89 (4): 1954- 1964
doi: 10.1128/JVI.02615-14
|
|
|
[5] |
JEFFERS S A , TUSELL S M , GILLIM-ROSS L et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus[J]. Proc Natl Acad Sci U S A, 2004, 101 (44): 15748- 15753
doi: 10.1073/pnas.0403812101
|
|
|
[6] |
LARKIN M A , BLACKSHIELDS G , BROWN N P et al. Clustal W and Clustal X version 2.0[J]. Bioinformatics, 2007, 23 (21): 2947- 2948
doi: 10.1093/bioinformatics/btm404
|
|
|
[7] |
ETERSEN T N , BRUNAK S , VON HEIJNE G et al. SignalP 4.0:discriminating signal peptides from transmembrane regions[J]. Nat Methods, 2011, 8 (10): 785- 786
doi: 10.1038/nmeth.1701
|
|
|
[8] |
KROGH A , LARSSON B , VON HEIJNE G et al. Predicting transmembrane protein topology with a hidden Markov model:application to complete genomes[J]. J Mol Biol, 2001, 305 (3): 567- 580
doi: 10.1006/jmbi.2000.4315
|
|
|
[9] |
MITCHELL A L , ATTWOOD T K , BABBITT P C et al. InterPro in 2019:improving coverage, classification and access to protein sequence annotations[J]. Nucleic Acids Res, 2019, 47 (D1): D351- D360
doi: 10.1093/nar/gky1100
|
|
|
[10] |
EL-GEBALI S , MISTRY J , BATEMAN A et al. The Pfam protein families database in 2019[J]. Nucleic Acids Res, 2019, 47 (D1): D427- D432
doi: 10.1093/nar/gky995
|
|
|
[11] |
BERMAN H M , WESTBROOK J , FENG Z et al. The protein data bank[J]. Nucleic Acids Res, 2000, 28 (1): 235- 242
doi: 10.1093/nar/28.1.235
|
|
|
[12] |
WRAPP D , WANG N , CORBETT K S et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation[J]. Science, 2020, 367 (6483): 1260- 1263
doi: 10.1126/science.abb2507
|
|
|
[13] |
GUI M , SONG W , ZHOU H et al. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding[J]. Cell Res, 2017, 27 (1): 119- 129
doi: 10.1038/cr.2016.152
|
|
|
[14] |
SZKLARCZYK D , MORRIS J H , COOK H et al. The STRING database in 2017:quality-controlled protein-protein association networks, made broadly accessible[J]. Nucleic Acids Res, 2017, 45 (D1): D362- D368
doi: 10.1093/nar/gkw937
|
|
|
[15] |
LARSEN J E , LUND O , NIELSEN M . Improved method for predicting linear B-cell epitopes[J]. Immunome Res, 2006, 2 2
doi: 10.1186/1745-7580-2-2
|
|
|
[16] |
JENSEN K K , ANDREATTA M , MARCATILI P et al. Improved methods for predicting peptide binding affinity to MHC class II molecules[J]. Immunology, 2018, 154 (3): 394- 406
doi: 10.1111/imm.12889
|
|
|
[17] |
COUGHLIN M M , PRABHAKAR B S . Neutralizing human monoclonal antibodies to severe acute respiratory syndrome coronavirus:target, mechanism of action, and therapeutic potential[J]. Rev Med Virol, 2012, 22 (1): 2- 17
doi: 10.1002/rmv.706
|
|
|
[18] |
MILLET J K , WHITTAKER G R . Host cell proteases:critical determinants of coronavirus tropism and pathogenesis[J]. Virus Res, 2015, 202 120- 134
doi: 10.1016/j.virusres.2014.11.021
|
|
|
[19] |
KAWASE M , SHIRATO K , MATSUYAMA S et al. Protease-mediated entry via the endosome of human coronavirus 229E[J]. J Virol, 2009, 83 (2): 712- 721
doi: 10.1128/JVI.01933-08
|
|
|
[20] |
SIMMONS G , GOSALIA D N , RENNEKAMPA J et al. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry[J]. Proc Natl Acad Sci U S A, 2005, 102 (33): 11876- 11881
doi: 10.1073/pnas.0505577102
|
|
|
[21] |
XU X , CHEN P , WANG J et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission[J]. Sci China Life Sci, 2020, 63 (3): 457- 460
doi: 10.1007/s11427-020-1637-5
|
|
|
[22] |
FREUND N T , ROITBURD-BERMAN A , SUI J et al. Reconstitution of the receptor-binding motif of the SARS coronavirus[J]. Protein Eng Des Sel, 2015, 28 (12): 567- 575
doi: 10.1093/protein/gzv052
|
|
|
[23] |
WALLS A C , TORTORICI M A , SNIJDER J et al. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion[J]. Proc Natl Acad Sci U S A, 2017, 114 (42): 11157- 11162
doi: 10.1073/pnas.1708727114
|
|
|
[24] |
WAN Y , SHANG J , GRAHAM R et al. Receptor recognition by the novel coronavirus from Wuhan:an analysis based on decade-long structural studies of SARS coronavirus[J]. J Virol, 2020, 94 (7):
doi: 10.1128/JVI.00127-20
|
|
|
[25] |
PERLOT T , PENNINGER J M . ACE2-from the renin-angiotensin system to gut microbiota and malnutrition[J]. Microbes Infect, 2013, 15 (13): 866- 873
doi: 10.1016/j.micinf.2013.08.003
|
|
|
[26] |
中国医师协会老年医学科医师分会, 国家老年医学中心 . 老年新型冠状病毒肺炎诊断和治疗专家共识[J]. 中国医师杂志, 2020, 22 (2): 161- 165 Geriatrics Medical Doctor Branch of the Chinese Medical Doctor Association , National Center of Gerontology . Expert consensus on the diagnosis and treatment of COVID-19 in the elderly[J]. Journal of Chinese Physician, 2020, 22 (2): 161- 165
doi: 10.3760/cma.j.issn.1008-1372.2020.02.001
|
|
|
[27] |
PATEL S , RAUF A , KHAN H et al. Renin-angiotensin-aldosterone (RAAS):The ubiquitous system for homeostasis and pathologies[J]. Biomed Pharmacother, 2017, 94 317- 325
doi: 10.1016/j.biopha.2017.07.091
|
|
|
[28] |
HAAK A J , DUCHARME M T , DIAZ ESPINOSA A M et al. Targeting GPCR signaling for idiopathic pulmonary fibrosis therapies[J]. Trends Pharmacol Sci, 2020, 41 (3): 172- 182
doi: 10.1016/j.tips.2019.12.008
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|