Please wait a minute...
J Zhejiang Univ (Med Sci)  2020, Vol. 49 Issue (1): 113-117    DOI: 10.3785/j.issn.1008-9292.2020.02.12
    
Research advance of ANRIL on atherosclerosis by regulating cell proliferation and apoptosis
FANG Juan(),PAN Zhicheng,GUO Xiaogang*()
Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
Download: HTML( 8 )   PDF(961KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Atherosclerosis is an important pathological basis for coronary artery disease. ANRIL is an antisense non-coding RNA located in Chr9p21 locus, which was identified as the most significant risk locus associated with atherosclerosis. ANRIL can produce multiple transcripts including linear and circular transcripts after various transcript splicing. It has been illustrated that ANRIL plays important roles in the pathology of atherosclerosis by regulating the proliferation and apoptosis of vascular cells. Linear ANRIL can regulate the proliferation of vascular smooth muscle cells (VSMCs) in plaques by chromatin modification, as well as influence the proliferation and the apoptosis of macrophages in post transcription; circular ANRIL can affect the proliferation and apoptosis of VSMCs by chromatin modification as well as interfering with rRNA maturation. In this review, we describe the ANRIL evolution, different transcripts characteristics, and their roles in the proliferation and apoptosis of vascular cells to participate in the process of atherosclerosis, for further understanding the pathogenesis of atherosclerosis and finding potential targets for diagnosis and treatment of atherosclerosis.



Key wordsAtherosclerosis      Antisense non-coding RNA in the INK4 locus      Cell proliferation      Apoptosis      Review     
Received: 02 December 2019      Published: 08 June 2020
CLC:  R543.5  
Corresponding Authors: GUO Xiaogang     E-mail: fangjuan@zju.edu.cn;gxg22222@zju.edu.cn
Cite this article:

FANG Juan,PAN Zhicheng,GUO Xiaogang. Research advance of ANRIL on atherosclerosis by regulating cell proliferation and apoptosis. J Zhejiang Univ (Med Sci), 2020, 49(1): 113-117.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2020.02.12     OR     http://www.zjujournals.com/med/Y2020/V49/I1/113


INK4基因座中反义非编码RNA调控细胞增殖与凋亡影响动脉粥样硬化的研究进展

动脉粥样硬化是冠心病的重要病理基础,INK4基因座中反义非编码RNA(ANRIL)位于与其相关性最强的遗传易感区段,即9号染色体短臂2区1带(Chr9p21)。ANRIL通过不同的转录剪接方式可产生线性、环状等多种转录本,可调控斑块内相关细胞的增殖和凋亡,与动脉粥样硬化斑块发生发展密切相关。线性ARNIL可通过调节染色质修饰过程调控斑块内血管平滑肌细胞增殖,也可从转录水平调控斑块内巨噬细胞增殖和凋亡;环状ANRIL可调控染色质修饰及干预核糖体RNA加工成熟,进而影响平滑肌细胞的增殖和凋亡。本文对ANRIL的进化特征、转录本的形成及结构、各转录本调节血管细胞增殖和凋亡进而参与动脉粥样硬化的机制进行了系统阐述,以期为深入理解动脉粥样硬化的发病机制,寻找动脉粥样硬化诊治靶点提供依据。


关键词: 动脉粥样硬化,  INK4基因座中反义非编码RNA,  细胞增殖,  细胞凋亡,  综述 
[1]   KIM S M , HUH J W , KIM E Y et al. Endothelial dysfunction induces atherosclerosis:increased aggrecan expression promotes apoptosis in vascular smooth muscle cells[J]. BMB Rep, 2019, 52 (2): 145- 150
doi: 10.5483/BMBRep.2019.52.2.282
[2]   SCHAFTENAAR F , FRODERMANN V , KUIPER J et al. Atherosclerosis:the interplay between lipids and immunecells[J]. Curr Opin Lipidol, 2016, 27 (3): 209- 215
doi: 10.1097/MOL.0000000000000302
[3]   LINTON M F , BABAEV V R , HUANG J et al. Macrophage apoptosis and efferocytosis in the pathogenesis of atherosclerosis[J]. Circ J, 2016, 80 (11): 2259- 2268
doi: 10.1253/circj.CJ-16-0924
[4]   ALLAHVERDIAN S , CHAABANE C , BOUKAIS K et al. Smooth muscle cell fate and plasticity in atherosclerosis[J]. Cardiovasc Res, 2018, 114 (4): 540- 550
doi: 10.1093/cvr/cvy022
[5]   PASMANT E , SABBAGH A , VIDAUD M et al. ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS[J]. FASEB J, 2011, 25 (2): 444- 448
doi: 10.1096/fj.10-172452
[6]   CHEN L , QU H , GUO M et al. ANRIL andatherosclerosis[J]. J Clin Pharm Ther, 2020, 45 (2): 240- 248
doi: 10.1111/jcpt.13060
[7]   HUANG T , ZHAO H Y , ZHANG X B et al. LncRNA ANRIL regulates cell proliferation and migration via sponging miR-339-5p and regulating FRS2 expression in atherosclerosis[J]. Eur Rev Med Pharmacol Sci, 2020, 24 (4): 1956- 1969
doi: 10.26355/eurrev_202002_20373
[8]   HOLDT L M , TEUPSER D . Long noncoding RNA ANRIL:Lnc-ing genetic variation at the chromosome 9p21 locus to molecular mechanisms of atherosclerosis[J]. Front Cardiovasc Med, 2018, 5:145
doi: 10.3389/fcvm.2018.00145
[9]   IBC 50K CAD CONSORTIUM. Large-scale gene-centric analysis identifies novel variants for coronary artery disease[J/OL]. PLoS Genet, 2011, 7(9): e1002260. DOI: 10.1371/journal.pgen.1002260.
[10]   HU L , SU G , WANG X . The roles of ANRIL polymorphisms in coronary artery disease:a meta-analysis[J]. Biosci Rep, 2019, 39 (12):
doi: 10.1042/BSR20181559
[11]   FICA S M , TUTTLE N , NOVAK T et al. RNA catalyses nuclear pre-mRNA splicing[J]. Nature, 2013, 503 (7475): 229- 234
doi: 10.1038/nature12734
[12]   ZHANG Z , SALISBURY D , SALLAM T . Long noncoding RNAs in atherosclerosis:JACC review topic of the week[J]. J Am Coll Cardiol, 2018, 72 (19): 2380- 2390
doi: 10.1016/j.jacc.2018.08.2161
[13]   JI Q , ZHANG C , SUN X et al. Circular RNAs function as competing endogenous RNAs in multiple types of cancer[J]. Oncol Lett, 2018, 15 (1): 23- 30
doi: 10.3892/ol.2017.7348
[14]   LI Z , HUANG C , BAO C et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nat Struct Mol Biol, 2015, 22 (3): 256- 264
doi: 10.1038/nsmb.2959
[15]   LI X , YANG L , CHEN L L . The biogenesis, functions, and challenges of circular RNAs[J]. Mol Cell, 2018, 71 (3): 428- 442
doi: 10.1016/j.molcel.2018.06.034
[16]   MESEURE D , VACHER S , ALSIBAI K D et al. Expression of ANRIL-polycomb complexes-CDKN2A/B/ARF genes in breast tumors:identification of a two-gene (EZH2/CBX7) signature with independent prognostic value[J]. Mol Cancer Res, 2016, 14 (7): 623- 633
doi: 10.1158/1541-7786.MCR-15-0418
[17]   CHITTOCK E C , LATWIEL S , MILLER T C et al. Molecular architecture of polycomb repressive complexes[J]. Biochem Soc Trans, 2017, 45 (1): 193- 205
doi: 10.1042/BST20160173
[18]   SCHUETTENGRUBER B , BOURBON H M , DI CROCE L et al. Genome regulation by polycomb and trithorax:70 years and counting[J]. Cell, 2017, 171 (1): 34- 57
doi: 10.1016/j.cell.2017.08.002
[19]   KONG Y , HSIEH C H , ALONSO L C . ANRIL:a lncRNA at the CDKN2A/B locus with roles in cancer and metabolic disease[J]. Front Endocrinol (Lausanne), 2018, 9:405
doi: 10.3389/fendo.2018.00405
[20]   LILLYCROP K , MURRAY R , CHEONG C et al. ANRIL promoter DNA methylation:a perinatal marker for later adiposity[J]. EBioMedicine, 2017, 19:60- 72
doi: 10.1016/j.ebiom.2017.03.037
[21]   REN C , SMITH S G , YAP K et al. Structure-guided discovery of selective antagonists for the chromodomain of polycomb repressive protein CBX7[J]. ACS Med Chem Lett, 2016, 7 (6): 601- 605
doi: 10.1021/acsmedchemlett.6b00042
[22]   SIMION V , HAEMMIG S , FEINBERG M W . LncRNAs in vascular biology and disease[J]. Vascul Pharmacol, 2019, 114:145- 156
doi: 10.1016/j.vph.2018.01.003
[23]   CHI J S , LI J Z , JIA J J et al. Long non-coding RNA ANRIL in gene regulation and its duality in atherosclerosis[J]. J Huazhong Univ Sci Technolog Med Sci, 2017, 37 (6): 816- 822
doi: 10.1007/s11596-017-1812-y
[24]   HUESO M , CRUZADO J M , TORRAS J et al. Aluminating the path of atherosclerosis progression:chaos theory suggests a role for Alu repeats in the development of atherosclerotic vascular disease[J]. Int J Mol Sci, 2018, 19 (6):
doi: 10.3390/ijms19061734
[25]   HOLDT L M, HOFFMANN S, SASS K, et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks[J/OL]. PLoS Genet, 2013, 9(7): e1003588. DOI: 10.1371/journal.pgen.1003588.
[26]   XU T , WU J , HAN P et al. Circular RNA expression profiles and features in human tissues:a study using RNA-seq data[J]. BMC Genomics, 2017, 18
doi: 10.1186/s12864-017-4029-3
[27]   TAN W L , LIM B T , ANENE-NZELU C G et al. A landscape of circular RNA expression in the human heart[J]. Cardiovasc Res, 2017, 113 (3): 298- 309
doi: 10.1093/cvr/cvw250
[28]   HOLDT L M , STAHRINGER A , SASS K et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans[J]. Nat Commun, 2016, 7:12429
doi: 10.1038/ncomms12429
[29]   DUBLAND J A , FRANCIS G A . So much cholesterol:the unrecognized importance of smooth muscle cells in atherosclerotic foam cell formation[J]. Curr Opin Lipidol, 2016, 27 (2): 155- 161
doi: 10.1097/MOL.0000000000000279
[30]   HOLDT L M , KOHLMAIER A , TEUPSER D . Molecular roles and function of circular RNAs in eukaryotic cells[J]. Cell Mol Life Sci, 2018, 75 (6): 1071- 1098
doi: 10.1007/s00018-017-2688-5
[31]   ALTESHA M A , NI T , KHAN A et al. Circular RNA in cardiovascular disease[J]. J Cell Physiol, 2019, 234 (5): 5588- 5600
doi: 10.1002/jcp.27384
[32]   KRISTENSEN L S , ANDERSEN M S , STAGSTED L et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20 (11): 675- 691
doi: 10.1038/s41576-019-0158-7
[1] YE Jiayi,GONG Hengpei,WANG Lingfeng,HUANG Zhen,QIU Fengmei,ZHONG Xiaoming. Protective effect of iridoid glycosides of radix scrophulariae on endoplasmic reticulum stress induced by oxygen-glucose deprivation and reperfusion in vitro model[J]. J Zhejiang Univ (Med Sci), 2020, 49(6): 705-713.
[2] ZHU Huiqi,YING Kejing. Tissue factors and venous thromboembolism in cancer patients[J]. J Zhejiang Univ (Med Sci), 2020, 49(6): 772-778.
[3] LIN Cuicui,CHEN Zhengyun,WANG Chunyan,XI Yongmei. Research progress on biomarkers for endometriosis based on lipidomics[J]. J Zhejiang Univ (Med Sci), 2020, 49(6): 779-784.
[4] LI Mengyao,LIU Pan,KE Yuehai,ZHANG Xue. Research progress on macrophage in radiation induced lung injury[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 623-628.
[5] HAN Xue,JIANG Guojun,SHI Qiaojuan. Effects of antihyperglycemics on endothelial progenitor cells[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 629-636.
[6] DUAN Runping,XU Yesheng,ZHENG Libin,YAO Yufeng. Research progress on etiologic diagnosis of ocular viral diseases[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 644-650.
[7] WU Wei,XU Jian. Research progress on the role of pentraxin 3 in polycystic ovary syndrome[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 637-643.
[8] XU Qinglin,LOU Guodong,WANG Tiantian,ZHANG Lisan. Advances in treatment of narcolepsy[J]. J Zhejiang Univ (Med Sci), 2020, 49(4): 419-424.
[9] JIANG Peiran,WANG Zhiping. Progress on axon regeneration in model organisms[J]. J Zhejiang Univ (Med Sci), 2020, 49(4): 500-507.
[10] YU Qing, XIONG Xiufang, SUN Yi. Targeting Cullin-RING E3 ligases for anti-cancer therapy: efforts on drug discovery[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 1-19.
[11] DUAN Lingyan,YIN Xiangju,MENG Hong'en,FANG Xuexian,MIN Junxia,WANG Fudi. Progress on epigenetic regulation of iron homeostasis[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 58-70.
[12] LI Ai,ZHANG Tianyuan,GAO Jianqing. Progress on utilizing mesenchymal stem cells as cellular delivery system for targeting delivery of as drug/gene for anti-tumor therapy[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 20-34.
[13] HUANG Yaoping,YANG Feng,ZHOU Tianhua,XIE Shanshan. Emerging roles of Hippo signaling pathway in gastrointestinal cancers and its molecular mechanisms[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 35-43.
[14] ZHONG Wen,LOU Yan,QIU Chenyang,LI Donglin,ZHANG Hongkun. Antithrombotic therapy after iliac vein stenting[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 131-136.
[15] XU Yiming,YING Kejing. Research progress on neutrophil extracellular traps in tumor[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 107-112.