|
|
Correlation of cardiovascular risk factors with brain iron deposition: A magnetic resonance imaging study |
HU Linlin1,2( ),ZHANG Ruiting1,WANG Shuyue1,HONG Hui1,HUANG Peiyu1,*( ),ZHANG Minming1,*( ) |
1. Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China 2. Department of Radiology, Jinhua Central Hospital, Jinhua 321000, Zhejiang Province, China |
|
|
Abstract Objective: To study the correlation of common cardiovascular risk factors with brain iron deposition. Methods: Eighty-four elderly subjects without neurological diseases or brain trauma were included in the study. The cardiovascular risk factors were comprehensively assessed. MRI examination was performed to obtain high-resolution T1-weighted images and enhanced susceptibility weighted angiography (ESWAN) images, and R2* figure was obtained by post-processing the ESWAN sequence. High definition T1 images were segmented using computer segmentation technique. After registration to the ESWAN image, R2* values of each region of interest were extracted. Multiple linear regression analysis was used to analyze the relationship of R2* values in each area of interest with gender, age and vascular risk factors. Results: Smoking was associated with increased R2* values in the hippocampus, white matter and cortex (β=0.244, 0.317, 0.277, P < 0.05 or P < 0.01). Hypertension was correlated with the increase of R2* in the putamen (β=0.241, P=0.027). Hyperglycemia was associated with the increase of R2* in the thalamus (β=0.234, P < 0.05). In the thalamus, the R2* value of males was higher than that of females (β=0.320, P < 0.05). Age was correlated with the R2* values of thalamus, caudate nucleus, pallidus, white matter and cortex (β=-0.218、-0.254、0.216、-0.280 and -0.238, P < 0.05 or P < 0.01). Conclusion: Common cardiovascular risk factors may lead to iron deposition in the brain, and the deposition patterns vary with the gender, age and different risk factors.
|
Received: 05 July 2019
Published: 19 January 2020
|
|
Corresponding Authors:
HUANG Peiyu,ZHANG Minming
E-mail: hu001987@163.com;huangpy@zju.edu.cn;zhangminming@zju.edu.cn
|
心脑血管疾病高危因素对脑铁沉积影响的磁共振影像学研究
目的: 采用MRI方法研究常见心脑血管疾病高危因素与脑铁沉积的关系。方法: 纳入84名无神经系统疾病和脑外伤的社区中老年人,全面评估其心脑血管疾病高危因素,行MRI检查获取高清T1加权图像及T2*加权三维梯度回波序列(ESWAN)图像,ESWAN图像后处理得R2*图,采用计算机分割技术对高清T1加权图像进行组织分割,配准至ESWAN图像后,提取各脑区的R2*值。采用多元线性回归分析揭示中老年人性别、年龄、心脑血管疾病高危因素对各脑区R2*值的影响。结果: 海马、脑白质、脑皮质R2*值升高与吸烟有关(β值分别为0.244、0.317、0.277,P < 0.05或P < 0.01);壳核R2*值升高与高血压有关(β值为0.241,P < 0.05);丘脑R2*值升高与高血糖有关(β值为0.234,P < 0.05);男性丘脑R2*值高于女性(β值为0.320,P < 0.05);丘脑、尾状核、苍白球、脑白质、脑皮质等R2*值与年龄相关(β值分别为-0.218、-0.254、0.216、-0.280和-0.238,P < 0.05或P < 0.01)。结论: 常见心脑血管疾病高危因素可能导致脑铁沉积,且不同因素引起的铁沉积模式不同。
关键词:
心血管疾病/病因学,
卒中/病因学,
危险因素,
铁/代谢,
磁共振成像
|
|
[1] |
WARD R J , ZUCCA F A , DUYN J H et al. The role of iron in brain ageing and neurodegenerative disorders[J]. Lancet Neurol, 2014, 13 (10): 1045- 1060
doi: 10.1016/S1474-4422(14)70117-6
|
|
|
[2] |
GUAN X, XUAN M, GU Q, et al. Regionally progressive accumulation of iron in Parkinson's disease as measured by quantitative susceptibility mapping[J/OL]. NMR Biomed, 2017, 30(4): e3489.
|
|
|
[3] |
罗骁, 邱甜甜, 荚耘路 et al. 磁共振脑铁成像技术在阿尔茨海默病中的应用进展[J]. 临床放射学杂志, 2016, 35 (4): 645- 648 LUO Xiao , QIU Tiantian , JIA Yunlu et al. Advances in the application of magnetic resonance encephalon imaging in alzheimer's disease[J]. Journal of Clinical Radiology, 2016, 35 (4): 645- 648
|
|
|
[4] |
SUN Y , GE X , HAN X et al. Characterizing brain iron deposition in patients with subcortical vascular mild cognitive impairment using quantitative susceptibility mapping:a potential biomarker[J]. Front Aging Neurosci, 2017, 9 81
|
|
|
[5] |
PIRPAMER L , HOFER E , GESIERICH B et al. Determinants of iron accumulation in the normal aging brain[J]. Neurobiol Aging, 2016, 43 149- 155
doi: 10.1016/j.neurobiolaging.2016.04.002
|
|
|
[6] |
VALDéS HERNáNDEZ M , ALLERHAND M , GLATZ A et al. Do white matter hyperintensities mediate the association between brain iron deposition and cognitive abilities in older people?[J]. Eur J Neurol, 2016, 23 (7): 1202- 1209
doi: 10.1111/ene.13006
|
|
|
[7] |
DEL C , VALDéS HERNáNDEZ M , RITCHIE S , GLATZ A et al. Brain iron deposits and lifespan cognitive ability[J]. Age (Dordr), 2015, 37 (5): 100
doi: 10.1007/s11357-015-9837-2
|
|
|
[8] |
LANGKAMMER C , KREBS N , GOESSLER W et al. Quantitative MR imaging of brain iron:a postmortem validation study[J]. Radiology, 2011, 257 (2): 455- 462
|
|
|
[9] |
中国心血管病预防指南(2017)写作组, 中华心血管病杂志编辑委员会 . 中国心血管病预防指南(2017)[J]. 中华心血管病杂志, 2018, 46 (1): 10- 25 China cardiovascular disease prevention guidelines (2017) writing group , Editorial board of Chinese Journal of Cardiovascular Disease . China cardiovascular disease prevention guidelines (2017)[J]. Chinese Journal of Cardiovascular Disease, 2018, 46 (1): 10- 25
doi: 10.3760/cma.j.issn.0253-3758.2018.01.004
|
|
|
[10] |
HALLGREN B , SOURANDER P . The effect of age on the non-haemin iron in the human brain[J]. J Neurochem, 1958, 3 (1): 41- 51
doi: 10.1111/j.1471-4159.1958.tb12607.x
|
|
|
[11] |
ZECCA L , YOUDIM M B , RIEDERER P et al. Iron, brain ageing and neurodegenerative disorders[J]. Nat Rev Neurosci, 2004, 5 (11): 863- 873
doi: 10.1038/nrn1537
|
|
|
[12] |
CONDE J R , STREIT W J . Microglia in the aging brain[J]. J Neuropathol Exp Neurol, 2006, 65 (3): 199- 203
doi: 10.1097/01.jnen.0000202887.22082.63
|
|
|
[13] |
FARRALL A J , WARDLAW J M . Blood-brain barrier:ageing and microvascular disease-systematic review and meta-analysis[J]. Neurobiol Aging, 2009, 30 (3): 337- 352
doi: 10.1016/j.neurobiolaging.2007.07.015
|
|
|
[14] |
王波, 龚霞蓉, 张洁 et al. R2*值评价健康成年人脑铁含量与年龄的相关性研究[J]. 中国现代医学杂志, 2016, 26 (1): 82- 88 WANG Bo , GONG Xiarong , ZHANG Jie et al. R2* value to evaluate the correlation between iron content and age in healthy adults[J]. China Journal of Modern Medicine, 2016, 26 (1): 82- 88
doi: 10.3969/j.issn.1005-8982.2016.01.015
|
|
|
[15] |
JIN L , WANG J , ZHAO L et al. Decreased serum ceruloplasmin levels characteristically aggravate nigral iron deposition in Parkinson's disease[J]. Brain, 2011, 134 (Pt 1): 50- 58
|
|
|
[16] |
XU X , WANG Q , ZHANG M . Age, gender, and hemispheric differences in iron deposition in the human brain:an in vivo MRI study[J]. Neuroimage, 2008, 40 (1): 35- 42
doi: 10.1016/j.neuroimage.2007.11.017
|
|
|
[17] |
AQUINO D , BIZZI A , GRISOLI M et al. Age-related iron deposition in the basal ganglia:quantitative analysis in healthy subjects[J]. Radiology, 2009, 252 (1): 165- 172
doi: 10.1148/radiol.2522081399
|
|
|
[18] |
GONG N J , WONGA C S , HUIA E S et al. Hemisphere, gender and age-related effects on iron deposition in deep gray matter revealed by quantitative susceptibility mapping[J]. NMR Biomed, 2015, 28 1267- 1274
doi: 10.1002/nbm.3366
|
|
|
[19] |
BARTZOKIS G , TISHLER T A , LU P H et al. Brain ferritin iron may influence age-and gender-related risks of neurodegeneration[J]. Neurobiol Aging, 2007, 28 (3): 414- 423
doi: 10.1016/j.neurobiolaging.2006.02.005
|
|
|
[20] |
FREY B N , DIAS R S . Sex hormones and biomarkers of neuroprotection and neurodegeneration:implications for female reproductive events in bipolar disorder[J]. Bipolar Disord, 2014, 16 (1): 48- 57
doi: 10.1111/bdi.12151
|
|
|
[21] |
ABBRUSCATO T J , LOPEZ S P , MARK K S et al. Nicotine and cotinine modulate cerebral microvascular permeability and protein expression of ZO-1 through nicotinic acetylcholine receptors expressed on brain endothelial cells[J]. J Pharm Sci, 2002, 91 (12): 2525- 2538
doi: 10.1002/jps.10256
|
|
|
[22] |
HOSSAIN M , SATHE T , FAZIO V et al. Tobacco smoke:a critical etiological factor for vascular impairment at the blood-brain barrier[J]. Brain Res, 2009, 1287 192- 205
doi: 10.1016/j.brainres.2009.06.033
|
|
|
[23] |
ABBRUSCATO T J , LOPEZ S P , RODER K et al. Regulation of blood-brain barrier Na, K, 2Cl-cotransporter through phosphorylation during in vitro stroke conditions and nicotine exposure[J]. J Pharmacol Exp Ther, 2004, 310 (2): 459- 468
doi: 10.1124/jpet.104.066274
|
|
|
[24] |
RAIJ L , DEMASTER E G , JAIMES E A . Cigarette smoke-induced endothelium dysfunction:role of superoxide anion[J]. J Hypertens, 2001, 19 (5): 891- 897
doi: 10.1097/00004872-200105000-00009
|
|
|
[25] |
TSUCHIYA M , ASADA A , KASAHARA E et al. Smoking a single cigarette rapidly reduces combined concentrations of nitrate and nitrite and concentrations of antioxidants in plasma[J]. Circulation, 2002, 105 (10): 1155- 1157
doi: 10.1161/hc1002.105935
|
|
|
[26] |
TUON T , VALVASSORI S S , LOPES-BORGES J et al. Effects of moderate exercise on cigarette smoke exposure-induced hippocampal oxidative stress values and neurological behaviors in mice[J]. Neurosci Lett, 2010, 475 (1): 16- 19
doi: 10.1016/j.neulet.2010.03.030
|
|
|
[27] |
LEE H M , REED J , GREELEY G H J R et al. Impaired mitochondrial respiration and protein nitration in the rat hippocampus after acute inhalation of combustion smoke[J]. Toxicol Appl Pharmacol, 2009, 235 (2): 208- 215
doi: 10.1016/j.taap.2008.12.010
|
|
|
[28] |
YU R , DEOCHAND C , KROTOW A et al. Tobacco smoke-induced brain white matter myelin dysfunction:potential co-factor role of smoking in neurodegeneration[J]. J Alzheimers Dis, 2016, 50 (1): 133- 148
|
|
|
[29] |
ALKONDON M , ALBUQUERQUE E X . The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex[J]. Prog Brain Res, 2004, 145 109- 120
doi: 10.1016/S0079-6123(03)45007-3
|
|
|
[30] |
BURGMANS S , VAN BOXTEL M P , GRONENSCHILD E H et al. Multiple indicators of age-related differences in cerebral white matter and the modifying effects of hypertension[J]. Neuroimage, 2010, 49 (3): 2083- 2093
doi: 10.1016/j.neuroimage.2009.10.035
|
|
|
[31] |
管勇, 吕少萍, 孙淼 et al. 壳核动脉的显微解剖研究及其临床意义[J]. 中国临床神经外科杂志, 2006, 11 (4): 213- 215 GUAN Yong , LV Shaoping , SUN Miao et al. Microanatomy of the putamen artery and its clinical significance[J]. Chinese Journal of Clinical Neurosurgery, 2006, 11 (4): 213- 215
doi: 10.3969/j.issn.1009-153X.2006.04.008
|
|
|
[32] |
GREENBERG S M , VERNOOIJ M W , CORDONNIER C et al. Cerebral microbleeds:a guide to detection and interpretation[J]. Lancet Neurol, 2009, 8 (2): 165- 174
doi: 10.1016/S1474-4422(09)70013-4
|
|
|
[33] |
SEALS D R , MOREAU K L , GATES P E et al. Modulatory influences on ageing of the vasculature in healthy humans[J]. Exp Gerontol, 2006, 41 (5): 501- 507
doi: 10.1016/j.exger.2006.01.001
|
|
|
[34] |
AY H , KOROSHETZ W J , VANGEL M et al. Conversion of ischemic brain tissue into infarction increases with age[J]. Stroke, 2005, 36 (12): 2632- 2636
doi: 10.1161/01.STR.0000189991.23918.01
|
|
|
[35] |
URICH H. Malformations of the nervous system, perinatal damage and related conditions in early life[M]//BLACKWOOD W, CORSELLIS J A N. Greenfield's neuropathology. London: Edward Arnold Publishers, 1973: 361-469.
|
|
|
[36] |
CORDONNIER C , AL-SHAHI SALMAN R , WARDLAW J . Spontaneous brain microbleeds:systematic review, subgroup analyses and standards for study design and reporting[J]. Brain, 2007, 130 (Pt 8): 1988- 2003
|
|
|
[37] |
LIU Y , LIU J , LIU H et al. Investigation of cerebral iron deposition in aged patients with ischemic cerebrovascular disease using susceptibility-weighted imaging[J]. Ther Clin Risk Manag, 2016, 12 1239- 1247
doi: 10.2147/TCRM.S107783
|
|
|
[38] |
SONG E C , CHU K , JEONG S W et al. Hyperglycemia exacerbates brain edema and perihematomal cell death after intracerebral hemorrhage[J]. Stroke, 2003, 34 (9): 2215- 2220
doi: 10.1161/01.STR.0000088060.83709.2C
|
|
|
[39] |
OUBIDAR M , BOQUILLON M , MARIE C et al. Ischemia-induced brain iron delocalization:effect of iron chelators[J]. Free Radic Biol Med, 1994, 16 (6): 861- 867
doi: 10.1016/0891-5849(94)90205-4
|
|
|
[40] |
HUNT J V , DEAN R T , WOLFF S P . Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing[J]. Biochem J, 1988, 256 (1): 205- 212
doi: 10.1042/bj2560205
|
|
|
[41] |
WOLFF S P , BASCAL Z A , HUNT J V . "Autoxidative glycosylation":free radicals and glycation theory[J]. Prog Clin Biol Res, 1989, 304 259- 275
|
|
|
[42] |
WOLFF S P , JIANG Z Y , HUNT J V . Protein glycation and oxidative stress in diabetes mellitus and ageing[J]. Free Radic Biol Med, 1991, 10 (5): 339- 352
doi: 10.1016/0891-5849(91)90040-A
|
|
|
[43] |
LI P A , LIU G J , HE Q P et al. Production of hydroxyl free radical by brain tissues in hyperglycemic rats subjected to transient forebrain ischemia[J]. Free Radic Biol Med, 1999, 27 (9-10): 1033- 1040
doi: 10.1016/S0891-5849(99)00152-5
|
|
|
[44] |
FENG X , DEISTUNG A , REICHENBACH J R . Quantitative susceptibility mapping (QSM) and R2* in the human brain at 3T:Evaluation of intra-scanner repeatability[J]. Z Med Phys, 2018, 28 (1): 36- 48
|
|
|
[45] |
HAMETNER S , ENDMAYR V , DEISTUNG A et al. The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation-A biochemical and histological validation study[J]. Neuroimage, 2018, 179 117- 133
doi: 10.1016/j.neuroimage.2018.06.007
|
|
|
[46] |
WANG R , XIE G , ZHAI M et al. Stability of R2* and quantitative susceptibility mapping of the brain tissue in a large scale multi-center study[J]. Sci Rep, 2017, 7 45261
doi: 10.1038/srep45261
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|