|
|
Identification of dynamic co-expression networks in peripheral blood of rats after middle cerebral artery occlusion |
PAN Zongfu1( ),HU Xiaoping1,ZHANG Yiwen1,LI Li2,*( ),HUANG Ping1,*( ) |
1. Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China 2. Department of Pharmacy, First People's Hospital of Chun'an, Hangzhou 311700, China |
|
|
Abstract Objective: To identify the time dependent profiles of gene expression and featured co-expression network modules in peripheral blood of rats after middle cerebral artery occlusion (MCAO). Methods: Microarray GSE119121 from GEO database was analyzed by R language to identify the significantly changed genes in peripheral blood at different time points (0, 1, 2, 3, 6 and 24 h) after MCAO. Gene expression patterns at different time courses were screened by STEM tools. Then, function annotation and pathway enrichment of differentially expressed genes (DEGs) were performed using the Gene Ontology (GO) database and the Kyoto Gene and Genomic Encyclopedia (KEGG) database. Depending on CEMiTool package, gene expression profile matrix was inputted into R to construct the co-expression networks and to analyze modules, and enrichment analysis was conducted to evaluate the correlation between the modules and different time points. Results: Comparing with gene at 0 h, the numbers of DEGs in peripheral blood at different time points after MCAO were 163 (1 h), 502 (2 h), 527 (3 h), 550 (6 h), and 75 (24 h), respectively. Moreover, a total of 38 gene expression patterns were enriched, and pattern 65 and pattern 34 were specifically up-regulated or down-regulated at 2-6 h. Hp, Nos2, P2ry10, and Klf12 were representative genes of these two models. The co-expression network module analysis showed that the gene status in the early acute phase (1-6 h) was positively correlated with the Module 2. Module 3 and Module 4 was positively correlated with phase phase 1-3 h and 2-6 h, respectively. Noteworthy, Module 6 gradually changed from positive correlation (0-2 h) to negative correlation (3-24 h) with the MCAO time course, and Module 6 was mainly related to viral response and innate immune response. The hub genes of Module 6 included Mx1, Mx2, and Rtp4. Conclusion: Our study has identified the featured genes and dynamic co-expression network modules in peripheral blood after acute ischemic stroke, which provides a potential basis for judging the onset time of ischemic stroke.
|
Received: 08 June 2019
Published: 19 January 2020
|
|
Corresponding Authors:
LI Li,HUANG Ping
E-mail: panzongfu@163.com;420683321@qq.com;huangping1841@zjcc.org.cn
|
缺血性脑损伤大鼠外周血动态共表达网络分析
目的: 研究大脑中动脉栓塞(MCAO)大鼠不同造模时程外周血的特异表达基因及特征共表达网络模块。方法: 利用GEO数据库的基因表达谱芯片GSE119121联合R语言分析MCAO造模后不同时间点(0、1、2、3、6及24 h)外周血的差异表达基因。通过STEM工具筛选不同造模时程基因表达模式。利用基因本体(GO)数据库和京都基因与基因组百科全书(KEGG)数据库对差异表达的基因进行功能注释和通路富集。在R语言环境下利用CEMiTool包对基因表达谱矩阵进行共表达网络构建及模块分析,并将模块与不同造模时间点进行富集分析。结果: 与造模0 h相比,造模后1、2、3、6及24 h差异表达基因数分别为163、502、527、550、75。共有38种基因表达模式被富集,其中模式65和模式34分别在2~6 h特异上调或下调,Hp、Nos2、P2ry10及Klf12为两种模式的代表性基因。共表达网络模块分析显示,造模急性期早期(1~6 h)基因状态与模块2正相关,造模1~3 h基因状态与模块3正相关,造模2~6 h基因变化与模块4正相关。基因模块6随着造模时间的迁移,与各时间点从正相关(0~2 h)逐渐转为负相关(3~24 h),模块6主要与病毒应答及固有免疫应答相关,其网络核心节点包括Mx1、Mx2、Rtp4等基因。结论: 本研究初步筛选了缺血性脑卒中急性发病期大鼠外周血的特征基因及动态共表达网络模块,为探究缺血性脑卒中的病理生理变化规律提供了依据。
关键词:
缺氧缺血, 脑/血液,
卒中/血液,
基因表达,
基因调控网络
|
|
[1] |
MURRAY C J , LOPEZ A D . Measuring the global burden of disease[J]. N Engl J Med, 2013, 369 (5): 448- 457
doi: 10.1056/NEJMra1201534
|
|
|
[2] |
WANG J , AN Z , LI B et al. Increasing stroke incidence and prevalence of risk factors in a low-income Chinese population[J]. Neurology, 2015, 84 (4): 374- 381
doi: 10.1212/WNL.0000000000001175
|
|
|
[3] |
HACKE W , KASTE M , BLUHMKI E et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke[J]. N Engl J Med, 2008, 359 (13): 1317- 1329
doi: 10.1056/NEJMoa0804656
|
|
|
[4] |
FAIZ K W , SUNDSETH A , THOMMESSEN B et al. Reasons for low thrombolysis rate in a Norwegian ischemic stroke population[J]. Neurol Sci, 2014, 35 (12): 1977- 1982
doi: 10.1007/s10072-014-1876-4
|
|
|
[5] |
FINK J N , SELIM M H , KUMAR S et al. Why are stroke patients excluded from tPA therapy? An analysis of patient eligibility[J]. Neurology, 2001, 57 (9): 1739- 1740
doi: 10.1212/WNL.57.9.1739
|
|
|
[6] |
MOORE D F , LI H , JEFFRIES N et al. Using peripheral blood mononuclear cells to determine a gene expression profile of acute ischemic stroke:a pilot investigation[J]. Circulation, 2005, 111 (2): 212- 221
doi: 10.1161/01.CIR.0000152105.79665.C6
|
|
|
[7] |
STAMOVA B , XU H , JICKLING G et al. Gene expression profiling of blood for the prediction of ischemic stroke[J]. Stroke, 2010, 41 (10): 2171- 2177
doi: 10.1161/STROKEAHA.110.588335
|
|
|
[8] |
WANG Q , TANG X N , YENARI M A . The inflammatory response in stroke[J]. J Neuroimmunol, 2007, 184 (1-2): 53- 68
doi: 10.1016/j.jneuroim.2006.11.014
|
|
|
[9] |
DAGONNIER M, WILSON W J, FAVALORO J M, et al. Hyperacute changes in blood mRNA expression profiles of rats after middle cerebral artery occlusion: Towards a stroke time signature[J/OL]. PLoS One, 2018, 13(11): e0206321.
|
|
|
[10] |
SMYTH G K. limma: linear models for microarray data[M]//GENTLEMAN R, VINCENT J, CAREY V J, et al. Bioinformatics and computational biology solutions using R and bioconductor. Springer, 2011: 397-420.
|
|
|
[11] |
ERNST J , BAR-JOSEPH Z . STEM:a tool for the analysis of short time series gene expression data[J]. BMC Bioinformatics, 2006, 7: 191
doi: 10.1186/1471-2105-7-191
|
|
|
[12] |
RUSSO P S T , FERREIRA G R , CARDOZO L E et al. CEMiTool:a Bioconductor package for performing comprehensive modular co-expression analyses[J]. BMC Bioinformatics, 2018, 19 (1): 56
doi: 10.1186/s12859-018-2053-1
|
|
|
[13] |
SAVER J L . Time is brain-quantified[J]. Stroke, 2006, 37 (1): 263- 266
doi: 10.1161/01.STR.0000196957.55928.ab
|
|
|
[14] |
MINNERUP J , WERSCHING H , RINGELSTEIN E B et al. Impact of the extended thrombolysis time window on the proportion of recombinant tissue-type plasminogen activator-treated stroke patients and on door-to-needle time[J]. Stroke, 2011, 42 (10): 2838- 2843
doi: 10.1161/STROKEAHA.111.616565
|
|
|
[15] |
ZHANG T , XIANG L . Elevated plasma haptoglobin level as a potential marker for poor prognosis in acute cerebral infarction[J]. Eur Neurol, 2018, 79 (3-4): 154- 160
doi: 10.1159/000487648
|
|
|
[16] |
BREA D , SOBRINO T , BLANCO M et al. Usefulness of haptoglobin and serum amyloid A proteins as biomarkers for atherothrombotic ischemic stroke diagnosis confirmation[J]. Atherosclerosis, 2009, 205 (2): 561- 567
doi: 10.1016/j.atherosclerosis.2008.12.028
|
|
|
[17] |
LIU DA Z , JICKLING G C , ANDERB P et al. Elevating microRNA-122 in blood improves outcomes after temporary middle cerebral artery occlusion in rats[J]. J Cereb Blood Flow Metab, 2016, 36 (8): 1374- 1383
doi: 10.1177/0271678X15610786
|
|
|
[18] |
L?HMUSSAAR E , GSCHWENDTNER A , MUELLERJ C et al. ALOX5AP gene and the PDE4D gene in a central European population of stroke patients[J]. Stroke, 2005, 36 (4): 731- 736
doi: 10.1161/01.STR.0000157587.59821.87
|
|
|
[19] |
EVANS J F , FERGUSON A D , MOSLEYR T et al. What's all the FLAP about?:5-lipoxygenase-activating protein inhibitors for inflammatory diseases[J]. Trends Pharmacol Sci, 2008, 29 (2): 72- 78
doi: 10.1016/j.tips.2007.11.006
|
|
|
[20] |
JOHANNES L , KAMBADUR R , LEE-HELLMICH H et al. Antiviral determinants of rat Mx GTPases map to the carboxy-terminal half[J]. J Virol, 1997, 71 (12): 9792- 9795
doi: 10.1128/JVI.71.12.9792-9795.1997
|
|
|
[21] |
ARNHEITER H , SKUNTZ S , NOTEBORN M et al. Transgenic mice with intracellular immunity to influenza virus[J]. Cell, 1990, 62 (1): 51- 61
|
|
|
[22] |
DéCAILLOT F M , ROZENFELD R , GUPTA A et al. Cell surface targeting of mu-delta opioid receptor heterodimers by RTP4[J]. Proc Natl Acad Sci U S A, 2008, 105 (41): 16045- 16050
doi: 10.1073/pnas.0804106105
|
|
|
[23] |
SCHOGGINS J W , WILSON S J , PANIS M et al. A diverse range of gene products are effectors of the type Ⅰ interferon antiviral response[J]. Nature, 2011, 472 (7344): 481- 485
doi: 10.1038/nature09907
|
|
|
[1] |
附表1-大脑中动脉栓塞模型大鼠造模后1 h外周血上调倍数前50位基因
|
Download
|
[2] |
附表2-大脑中动脉栓塞模型大鼠造模后1 h外周血下调倍数前50位基因
|
Download
|
[3] |
附表3-大脑中动脉栓塞模型大鼠造模后2 h外周血上调倍数前50位基因
|
Download
|
[4] |
附表4-大脑中动脉栓塞模型大鼠造模后2 h外周血下调倍数前50位基因
|
Download
|
[5] |
附表5-大脑中动脉栓塞模型大鼠造模后3 h外周血上调倍数前50位基因
|
Download
|
[6] |
附表6-大脑中动脉栓塞模型大鼠造模后3 h外周血下调倍数前50位基因
|
Download
|
[7] |
附表7-大脑中动脉栓塞模型大鼠造模后6 h外周血上调倍数前50位基因
|
Download
|
[8] |
附表8-大脑中动脉栓塞模型大鼠造模后6 h外周血下调倍数前50位基因
|
Download
|
[9] |
附表9-大脑中动脉栓塞模型大鼠造模后24 h外周血上调基因
|
Download
|
[10] |
附表10-大脑中动脉栓塞模型大鼠造模后24 h外周血下调基因
|
Download
|
[11] |
附图1-大脑中动脉栓塞模型大鼠造模后外周血差异表达基因及特征基因
|
Download
|
[12] |
附图2-MCAO造模后不同时间点外周血差异基因的基因本体(生物进程)注释
|
Download
|
[13] |
附图3-MCAO造模后不同时间点外周血差异基因的KEGG通路富集
|
Download
|
[14] |
附图4-MCAO造模不同时间点外周血特征共表达模块分析
|
Download
|
[15] |
附图5-共表达模块蛋白互作用网络构建及核心基因分析
|
Download
|
[16] |
附图6-共表达模块基因本体注释及KEGG通路富集
|
Download
|
[17] |
本文所有附图附表下载
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|