Please wait a minute...
J Zhejiang Univ (Med Sci)  2019, Vol. 48 Issue (5): 573-579    DOI: 10.3785/j.issn.1008-9292.2019.10.17
    
Application of 3D printing techniques in treatment of congenital heart disease
XU Jiajun(),SHU Qiang*()
The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
Download: HTML( 8 )   PDF(754KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Congenital heart disease (CHD) is the most common birth defect at present. In recent years, the application of 3D printing in the diagnosis and treatment of CHD has been widely recognized, which presents CHD lesions in 3D solid model and provides a better understanding of the anatomy of CHD. In the future, 3D printing technology would improve the surgical proficiency, shorten the operation time, reduce the occurrence of perioperative complications, and create more personalized cardiovascular implants, therefore promote the precision of diagnosis and treatment for congenital heart disease. This article reviews the application of 3D printing technology in preoperative planning, intraoperative navigation and personalized implants of CHD, in surgical training and medical education, as well as in promoting doctor-patient communication and better understanding their condition for patients.



Key wordsPrinting, three-dimensional      Heart defects, congenital      Review     
Received: 10 June 2019      Published: 04 January 2020
CLC:  R726.2  
Corresponding Authors: SHU Qiang     E-mail: 123globe@163.com;shuqiang@zju.edu.cn
Cite this article:

XU Jiajun,SHU Qiang. Application of 3D printing techniques in treatment of congenital heart disease. J Zhejiang Univ (Med Sci), 2019, 48(5): 573-579.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2019.10.17     OR     http://www.zjujournals.com/med/Y2019/V48/I5/573


三维打印技术在先天性心脏病中的应用

先天性心脏病是发病率最高的出生缺陷。三维打印技术可以通过三维实体模型呈现心脏解剖,为进一步理解解剖结构提供了新的方法。本文就三维打印技术在先天性心脏病外科手术术前规划、术中导航中的应用、个性化植入物、医生外科手术训练和医学教育及促进医患沟通,帮助患者及家属了解病情等方面的应用进行综述。三维打印技术未来或可推动先天性心脏病诊治水平提高,提升外科医生手术熟练度,缩短手术时间,减少围术期并发症发生,以及制造出更多个性化心血管植入物及医疗器械,真正体现了精准医学的概念。


关键词: 打印, 三维,  心脏缺损, 先天性,  综述 
[1]   冯江, 袁秀琴, 朱军 et al. 中国2000—2010年5岁以下儿童死亡率和死亡原因分析[J]. 中华流行病学杂志, 2012, 33 (6): 558- 561
FENG Jiang , YUAN Xiuqin , ZHU Jun et al. Under-5-mortality rate and causes of death in China, 2000 to 2010[J]. Chinese Journal of Epidemiology, 2012, 33 (6): 558- 561
doi: 10.3760/cma.j.issn.0254-6450.2012.06.003
[2]   SUN Z , LAU I , WONG Y H et al. Personalized three-dimensional printed models in congenital heart disease[J]. J Clin Med, 2019, 8 (4): 522
doi: 10.3390/jcm8040522
[3]   VUKICEVIC M , MOSADEGH B , MIN J K et al. Cardiac 3D printing and its future directions[J]. JACC Cardiovasc Imaging, 2017, 10 (2): 171- 184
doi: 10.1016/j.jcmg.2016.12.001
[4]   HADEED K , ACAR P , DULAC Y et al. Cardiac 3D printing for better understanding of congenital heart disease[J]. Arch Cardiovasc Dis, 2018, 111 (1): 1- 4
[5]   ABUDAYYEH I , GORDON B , ANSARI M M et al. A practical guide to cardiovascular 3D printing in clinical practice: Overview and examples[J]. J Interv Cardiol, 2018, 31 (3): 375- 383
doi: 10.1111/joic.12446
[6]   SCHMAUSS D , HAEBERLE S , HAGL C et al. Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience[J]. Eur J Cardiothorac Surg, 2015, 47 (6): 1044- 1052
doi: 10.1093/ejcts/ezu310
[7]   OLIVIERI L J , KRIEGER A , LOKE Y H et al. Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy[J]. J Am Soc Echocardiogr, 2015, 28 (4): 392- 397
doi: 10.1016/j.echo.2014.12.016
[8]   SHIRAISHI I , KUROSAKI K , KANZAKI S et al. Development of super flexible replica of congenital heart disease with stereolithography 3D printing for simulation surgery and medical education[J]. J Card Fail, 2014, 20 (10): S180- S181
[9]   CANTINOTTI M , VALVERDE I , KUTTY S . Three-dimensional printed models in congenital heart disease[J]. Int J Cardiovasc Imaging, 2017, 33 (1): 137- 144
doi: 10.1007/s10554-016-0981-2
[10]   胡立伟, 白凯, 钟玉敏 et al. 磁共振成像技术在3D打印先天性心脏病建模中的应用[J]. 中国医学计算机成像杂志, 2016, 22 (4): 356- 360
HU Liwei , BAI Kai , ZHONG Yumin et al. Application of magnetic resonance imaging in 3D printing cardiac modeling of congenital heart disease[J]. Chinese Computed Medical Imaging, 2016, 22 (4): 356- 360
[11]   GOSNELL J , PIETILA T , SAMUEL B P et al. Integration of computed tomography and three-dimensional echocardiography for hybrid three-dimensional printing in congenital heart disease[J]. J Digit Imaging, 2016, 29 (6): 665- 669
doi: 10.1007/s10278-016-9879-8
[12]   FAROOQI K M , SENGUPTA P P . Echocardiography and three-dimensional printing: Sound ideas to touch a heart[J]. J Am Soc Echocardiogr, 2015, 28 (4): 398- 403
doi: 10.1016/j.echo.2015.02.005
[13]   RYAN J R , MOE T G , RICHARDSON R et al. A novel approach to neonatal management of tetralogy of Fallot, with pulmonary atresia, and multiple aortopulmonary collaterals[J]. JACC Cardiovasc Imaging, 2015, 8 (1): 103- 104
doi: 10.1016/j.jcmg.2014.04.030
[14]   FAROOQI K M , SAEED O , ZAIDI A et al. 3D printing to guide ventricular assist device placement in adults with congenital heart disease and heart failure[J]. JACC Heart Fail, 2016, 4 (4): 301- 311
doi: 10.1016/j.jchf.2016.01.012
[15]   BOUMA B J , MULDER B J . Changing landscape of congenital heart disease[J]. Circ Res, 2017, 120 (6): 908- 922
doi: 10.1161/CIRCRESAHA.116.309302
[16]   FORTE M , HUSSAIN T , ROEST A et al. Living the heart in three dimensions: applications of 3D printing in CHD[J]. Cardiol Young, 2019, 29 (6): 733- 743
doi: 10.1017/S1047951119000398
[17]   CHAOWU Y, HUA L, XIN S. Three-dimensional printing as an aid in transcatheter closure of secundum atrial septal defect with rim deficiency: in vitro trial occlusion based on a personalized heart model[J/OL]. Circulation, 2016, 133(17): e608-e610.
[18]   BARTEL T , RIVARD A , JIMENEZ A et al. Three-dimensional printing for quality management in device closure of interatrial communications[J]. Eur Heart J Cardiovasc Imaging, 2016, 17 (9): 1069
doi: 10.1093/ehjci/jew119
[19]   杨帆, 郑宏, 吕建华 et al. 3D打印技术指导下采用动脉导管未闭封堵器治疗下腔型房间隔缺损一例[J]. 中华心血管病杂志, 2015, 43 (7): 631- 633
YANG Fan , ZHENG Hong , LYU Jianhua et al. Treatment of atrial septal defect with a patent ductus arteriosus occlusion device under the guidance of 3D printing technology[J]. Chinese Journal of Cardiology, 2015, 43 (7): 631- 633
doi: 10.3760/cma.j.issn.0253-3758.2015.07.013
[20]   GAREKAR S , BHARATI A , CHOKHANDRE M et al. Clinical application and multidisciplinary assessment of three dimensional printing in double outlet right ventricle with remote ventricular septal defect[J]. World J Pediatr Congenit Heart Surg, 2016, 7 (3): 344- 350
doi: 10.1177/2150135116645604
[21]   FAROOQI K M, NIELSEN J C, UPPU S C, et al. Use of 3-dimensional printing to demonstrate complex intracardiac relationships in double-outlet right ventricle for surgical planning[J/OL]. Circ Cardiovasc Imaging, 2015, 8(5). pii: e003043.
[22]   BHATLA P , TRETTER J T , CHIKKABYRAPPA S et al. Surgical planning for a complex double-outlet right ventricle using 3D printing[J]. Echocardiography, 2017, 34 (5): 802- 804
doi: 10.1111/echo.13512
[23]   VODISKAR J , KVTTING M , STEINSEIFER U et al. Using 3D physical modeling to plan surgical corrections of complex congenital heart defects[J]. Thorac Cardiovasc Surg, 2017, 65 (1): 31- 35
[24]   VALVERDE I , GOMEZ G , GONZALEZ A et al. Three-dimensional patient-specific cardiac model for surgical planning in Nikaidoh procedure[J]. Cardiol Young, 2015, 25 (4): 698- 704
doi: 10.1017/S1047951114000742
[25]   刘坤, 吕滨, 郑哲 et al. 三维打印心脏病模型指导诊治复杂先天性心脏病3例[J]. 中华胸心血管外科杂志, 2015, 31 (7): 436- 438
LIU Kun , LYU Bin , ZHENG Zhe et al. Three-dimensional printing of heart disease model for diagnosis and treatment of 3 cases of complex congenital heart disease[J]. Chinese Journal of Thoracic and Cardiovascular Surgery, 2015, 31 (7): 436- 438
doi: 10.3760/cma.j.issn.1001-4497.2015.07.018
[26]   SMITH M L , MCGUINNESS J , O'REILLY M K et al. The role of 3D printing in preoperative planning for heart transplantation in complex congenital heart disease[J]. Ir J Med Sci, 2017, 186 (3): 753- 756
doi: 10.1007/s11845-017-1564-5
[27]   ZHANG W , LIU J , YAN Q et al. Computationalhaemodynamic analysis of left pulmonary artery angulation effects on pulmonary blood flow[J]. Interact Cardiovasc Thorac Surg, 2016, 23 (4): 519- 525
doi: 10.1093/icvts/ivw179
[28]   MELCHIORRI A J , HIBINO N , BEST C A et al. 3D-printed biodegradable polymeric vascular grafts[J]. Adv Healthc Mater, 2016, 5 (3): 319- 325
doi: 10.1002/adhm.201500725
[29]   JIN C , ZHANG J , LI X et al. Injectable 3-D fabrication of medical electronics at the target biological tissues[J]. Sci Rep, 2013, 3 3442
doi: 10.1038/srep03442
[30]   XU L , GUTBROD S R , BONIFAS A P et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium[J]. Nat Commun, 2014, 5 3329
doi: 10.1038/ncomms4329
[31]   NATHAN M , KARAMICHALIS J M , LIU H et al. Surgical technical performance scores are predictors of late mortality and unplanned reinterventions in infants after cardiac surgery[J]. J Thorac Cardiovasc Surg, 2012, 144 (5): 1095- 1101
doi: 10.1016/j.jtcvs.2012.07.081
[32]   JACOBS J P , O'BRIEN S M , HILL K D et al. Refining the society of thoracic surgeons congenital heart surgery database mortality risk model with enhanced risk adjustment for chromosomal abnormalities, syndromes, and noncardiac congenital anatomic abnormalities[J]. Ann Thorac Surg, 2019, 108 (2): 558- 566
doi: 10.1016/j.athoracsur.2019.01.069
[33]   YOO S J , SPRAY T , AUSTIN E H 3RD et al. Hands-on surgical training of congenital heart surgery using 3-dimensional print models[J]. J Thorac Cardiovasc Surg, 2017, 153 (6): 1530- 1540
doi: 10.1016/j.jtcvs.2016.12.054
[34]   SARRIS G E , POLIMENAKOS A C . Three-dimensional modeling in congenital and structural heart perioperative care and education: a path in evolution[J]. Pediatr Cardiol, 2017, 38 (5): 883- 885
doi: 10.1007/s00246-017-1614-9
[35]   JONES T W , SECKELER M D . Use of 3D models of vascular rings and slings to improve resident education[J]. Congenit Heart Dis, 2017, 12 (5): 578- 582
doi: 10.1111/chd.12486
[36]   GARAS M , VACCAREZZA M , NEWLAND G et al. 3D-printed specimens as a valuable tool in anatomy education: a pilot study[J]. Ann Anat, 2018, 219 57- 64
doi: 10.1016/j.aanat.2018.05.006
[37]   OLIVIERI L J , SU L , HYNES C F et al. "Just-in-time" simulation training using 3-d printed cardiac models after congenital cardiac surgery[J]. World J Pediatr Congenit Heart Surg, 2016, 7 (2): 164- 168
doi: 10.1177/2150135115623961
[38]   COSTELLO J P , OLIVIERI L J , KRIEGER A et al. Utilizing three-dimensional printing technology to assess the feasibility of high-fidelity synthetic ventricular septal defect models for simulation in medical education[J]. World J Pediatr Congenit Heart Surg, 2014, 5 (3): 421- 426
doi: 10.1177/2150135114528721
[39]   GIANNOPOULOS A A , MITSOURAS D , YOO S J et al. Applications of 3D printing in cardiovascular diseases[J]. Nat Rev Cardiol, 2016, 13 (12): 701- 718
doi: 10.1038/nrcardio.2016.170
[40]   BIGLINO G, CAPELLI C, WRAY J, et al. 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability[J/OL]. BMJ Open, 2015, 5(4): e007165.
[41]   GIANNOPOULOS A A , CHEPELEV L , SHEIKH A et al. 3D printed ventricular septal defect patch: a primer for the 2015 Radiological Society of North America (RSNA) hands-on course in 3D printing[J]. 3D Print Med, 2015, 1 (1): 3
doi: 10.1186/s41205-015-0002-4
[42]   HADEED K , ACAR P , DULAC Y et al. Cardiac 3D printing for better understanding of congenital heart disease[J]. Arch Cardiovasc Dis, 2018, 111 (1): 1- 4
[43]   BIGLINO G , KONIORDOU D , GASPARINI M et al. Piloting the use of patient-specific cardiac models as a novel tool to facilitate communication during cinical consultations[J]. Pediatr Cardiol, 2017, 38 (4): 813- 818
doi: 10.1007/s00246-017-1586-9
[44]   KIRALY L . Three-dimensional modelling and three-dimensional printing in pediatric and congenital cardiac surgery[J]. Transl Pediatr, 2018, 7 (2): 129- 138
doi: 10.21037/tp.2018.01.02
[45]   OGDEN K M , ASLAN C , ORDWAY N et al. Factors affecting dimensional accuracy of 3-D printed anatomical structures derived from CT data[J]. J Digit Imaging, 2015, 28 (6): 654- 663
doi: 10.1007/s10278-015-9803-7
[46]   WANG K , ZHAO Y , CHANG Y H et al. Controlling the mechanical behavior of dual-material 3D printed meta-materials for patient-specific tissue-mimicking phantoms[J]. Mater Des, 2016, 90 704- 712
doi: 10.1016/j.matdes.2015.11.022
[47]   LAU I , WONG Y H , YEONG C H et al. Quantitative and qualitative comparison of low- and high-cost 3D-printed heart models[J]. Quant Imaging Med Surg, 2019, 9 (1): 107- 114
doi: 10.21037/qims.2019.01.02
[48]   LAU I, LIU D, XU L, et al. Clinical value of patient-specific three-dimensional printing of congenital heart disease: Quantitative and qualitative assessments[J/OL]. PLoS One, 2018, 13(3): e0194333.
[49]   XU J J , LUO Y J , WANG J H et al. Patient-specific three-dimensional printed heart models benefit preoperative planning for complex congenital heart disease[J]. World J Pediatr, 2019, 15 (3): 246- 254
doi: 10.1007/s12519-019-00228-4
[50]   DUAN B , HOCKADAY L A , KANG K H et al. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels[J]. J Biomed Mater Res A, 2013, 101 (5): 1255- 1264
[51]   LEE A , HUDSON A R , SHIWARSKI D J et al. 3D bioprinting of collagen to rebuild components of the human heart[J]. Science, 2019, 365 (6452): 482- 487
doi: 10.1126/science.aav9051
[52]   CHEUNG D Y C, DUAN B, BUTCHER J T. Bioprinting of cardiac tissues[M]// ATALA A, YOO J J. Essentials of 3D Biofabrication and Translation. Academic Press, 2015: 351-370.
[53]   MURPHY S V , ATALA A . 3D bioprinting of tissues and organs[J]. Nat Biotechnol, 2014, 32 (8): 773- 785
doi: 10.1038/nbt.2958
[54]   HONG N , YANG G H , LEE J et al. 3D bioprinting and its in vivo applications[J]. J Biomed Mater Res B Appl Biomater, 2018, 106 (1): 444- 459
doi: 10.1002/jbm.b.33826
[1] ZHANG Junhao,JIN Jinghua,YANG Wei. Autophagy regulates the function of vascular smooth muscle cells in the formation and rupture of intracranial aneurysms[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 552-559.
[2] CHEN Dianyu,QI Ming. Research progress on uniparental disomy in cancer[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 560-566.
[3] LIN Jing,CHEN Zhimin. Research progress on early identification of severe adenovirus pneumonia in children[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 567-572.
[4] HUANG Shumin,ZHAO Zhengyan. Advances in newborn screening and immune system reconstitution of severe combined immunodeficiency[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 351-357.
[5] CHEN Guangjie,WANG Xiaohao,TANG Daxing. Progress on evaluation, diagnosis and management of disorders of sex development[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 358-366.
[6] ZHU Ziling, TAN Jing, DENG Hong. Nucleus translocation of membrane/cytoplasm proteins in tumor cells[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 318-325.
[7] ZHANG Jianmin. Advances in surgical treatment of ischemic cerebrovascular disease[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 233-240.
[8] WU Yuxing, ZHANG Shihong, CHEN Zhong. The roles of habenula and related neural circuits in neuropsychiatric diseases[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 310-317.
[9] ZHANG Yunzhu, ZHU Chunpeng, LU Xinliang. Advances in serum biomarkers for early diagnosis of gastric cancer[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 326-333.
[10] Baboo Kalianee Devi,CHEN Zhengyun,ZHANG Xinmei. Progress on medical treatment in the management of adenomyosis[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 142-147.
[11] WU Binbin,YANG Yi. Biomarkers of cardiac surgery-associated acute kidney injury: a narrative review[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 224-229.
[12] YANG Kun,HU Xiaosheng. Research progress on miR-21 in heart diseases[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 214-218.
[13] XU Li,XU Ming,TONG Xiangmin. Effects of aerobic glycolysis on pathogenesis and drug resistance of non-Hodgkin lymphoma[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 219-223.
[14] ZHAO Shihao,ZHANG Xue,KE Yuehai. Progress on correlation between cell senescence and idiopathic pulmonary fibrosis[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 111-115.
[15] SONG Fangjun,GUO Hongtao. Progress on structural biology of voltage-gated ion channels[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 25-33.