Please wait a minute...
J Zhejiang Univ (Med Sci)  2019, Vol. 48 Issue (5): 511-516    DOI: 10.3785/j.issn.1008-9292.2019.10.08
    
Value of myocardial scar in predicting malignant ventricular arrhythmia in patients with chronic myocardial infarction
GUO Danling1(),HU Hongjie2,*(),ZHAO Zhenhua1,*(),LYU Sangying1,HUANG Yanan1,JIANG Ruhong3,PU Cailing2,NI Hongxia1
1. Department of Radiology, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang Province, China
2. Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
3. Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
Download: HTML( 3 )   PDF(717KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To assess the predictive value of myocardial scar mass in malignant ventricular arrhythmia (MVA) after myocardial infarction. Methods: Thirty myocardial infarction patients with complete electrophysiology and cardiac MRI data admitted from January 2012 to August 2017 were enrolled in the study. According to the results of intracavitary electrophysiological study, MVA developed in 16 patients (MVA group) and not developed in 14 patients (non-MVA group). The qualitative and quantitative analysis of left ventricular ejection fraction (LVFE) and scar mass was performed with CVI42 post-processing software and predictive value of myocardial scar and LVEF for MVA after myocardial infarction was analyzed using ROC curves. Results: LVEF in MVA group was significantly lower than that in non-MVA group, and scar mass in MVA group was significantly higher than that in non-MVA group (all P < 0.05). Regression analysis showed that LVEF (OR=1.580) and scar mass (OR=6.270) were risk factors for MVA after myocardial infarction. For predicting MVA, the area under ROC curve (AUC) of LVEF was 0.696 with a sensitivity of 0.786 and the specificity of 0.685; the AUC of the scar mass was 0.839 with a sensitivity was 0.618 and the specificity of 0.929; the AUC of LVEF combined with scar mass was 0.848 with a sensitivity of 0.688 and specificity of 0.857. Conclusion: Myocardial scar assessed by late gadolinium enhancement MRI is more effective than LVEF in predicting MVA after myocardial infarction.



Key wordsMyocardial infarction      Magnetic resonance imaging      Arrhythmias, cardiac/diagnosis      Ventricular function, left      Myocardium/pathology      Cicatrix      Forecasting     
Received: 05 May 2019      Published: 04 January 2020
CLC:  R445.2  
  R542.2+2  
Corresponding Authors: HU Hongjie,ZHAO Zhenhua     E-mail: 494429508@qq.com;hongjiehu@zju.edu.en;zhao2075@163.com
Cite this article:

GUO Danling,HU Hongjie,ZHAO Zhenhua,LYU Sangying,HUANG Yanan,JIANG Ruhong,PU Cailing,NI Hongxia. Value of myocardial scar in predicting malignant ventricular arrhythmia in patients with chronic myocardial infarction. J Zhejiang Univ (Med Sci), 2019, 48(5): 511-516.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2019.10.08     OR     http://www.zjujournals.com/med/Y2019/V48/I5/511


心肌瘢痕对慢性心肌梗死后恶性室性心律失常发生的预测价值

目的: 分析心脏磁共振延迟强化量化的心肌瘢痕质量对慢性心肌梗死后恶性心律失常(MVA)发生的预测价值。方法: 选取2012年1月至2017年8月浙江大学医学院附属邵逸夫医院有完整腔内电生理及心脏磁共振资料的心肌梗死患者30例,根据腔内电生理检查结果分为两组:诱发出MVA组(16例)及未诱发出MVA组(14例)。通过CVI42后处理软件对左心室射血分数(LVEF)及延迟强化评估的心肌瘢痕进行定性及定量分析,ROC曲线分析比较心肌瘢痕与LVEF对心肌梗死后MVA的预测价值。结果: 诱发出MVA组LVEF明显低于未诱发出MVA组,延迟强化评估的瘢痕质量也更大(均P < 0.05)。回归分析发现,心肌瘢痕质量及LVEF为心肌梗死后MVA发生的风险因子(OR=6.270和1.580)。ROC曲线分析结果显示,LVEF预测心肌梗死后MVA的AUC为0.696,敏感度为0.786,特异度为0.685;瘢痕质量预测心肌梗死后恶性室性心律失常的AUC为0.839,敏感度为0.618,特异度为0.929;LVEF与瘢痕质量两个指标联合预测心肌梗死后MVA的AUC为0.848,敏感度为0.688,特异度为0.857。结论: 心肌瘢痕对预测心肌梗死后MVA发生的效能较LVEF更高,有望成为心肌梗死后患者预后评估的另一项预测指标。


关键词: 心肌梗死/病理生理学,  磁共振成像,  心律失常, 心性/诊断,  心室功能, 左,  心肌/病理学,  瘢痕,  预测 
组别n男性体质指数(kg/m2)年龄(岁)高血压糖尿病吸烟饮酒高血脂脑梗死心肌梗死家族史
“—”无相关数据;MVA:恶性室性心律失常.
诱发出MVA组1611(68.8)23.4±3.854±139(56.3)5(31.3)5(31.3)3(18.8)7(43.8)3(18.8)3(18.8)
未诱发出MVA组147(50.0)23.8±3.157±86(42.9)3(21.4)2(14.3)3(20.0)4(28.6)2(14.3)0(0.0)
t/χ2-1.4180.595-0.5180.0481.0811.467-0.1771.286-0.139-0.139
P>0.05>0.05>0.05>0.05>0.05>0.05>0.05>0.05>0.05>0.05
Tab 1 Baseline characteristics between patients with or without MVA  [$\bar x \pm s$或n(%)]
组别nLVEF (%)EDV (mL)ESV (mL)左心室心肌质量(g)
“—”无相关数据;MVA:恶性室性心律失常;LVEF:左心室射血分数;EDV:舒张末期容积;ESV:收缩末期容积.
诱发出MVA组1634±14196±46146±61161±65
未诱发出MVA组1444±13163±3284±34129±35
t-2.709-2.9223.2821.793
P<0.05<0.05<0.05>0.05
Tab 2 Left ventricular function and myocardial quality of patients with or without MVA  ($\bar x \pm s$)
组别n瘢痕质量(g)瘢痕质量百分比(%)灰区质量(g)灰区容积百分比(%)
“—”无相关数据;MVA:恶性室性心律失常.
诱发出MVA组1633±1032±1041±2138±20
未诱发出MVA组1426±724±733±1431±13
t3.4742.6080.8964.030
P<0.05<0.05>0.05>0.05
Tab 3 Late gadolinium enhanced parameters of patients with or without MVA  ($\bar x \pm s$)
变量回归系数ORP
性别-0.1590.853>0.05
体质指数-0.1780.837>0.05
年龄-0.1280.880>0.05
高血压-0.1560.856>0.05
糖尿病-0.0890.915>0.05
吸烟-0.1950.823>0.05
饮酒-0.0870.917>0.05
高血脂-0.0360.965>0.05
脑梗死-0.0030.997>0.05
心肌梗死家族史-0.1080.898>0.05
左心室心肌质量-0.1330.876>0.05
灰区质量-0.2340.792>0.05
左心室射血分数0.4631.580<0.05
瘢痕质量1.8366.270<0.05
Tab 4 Multivariate logistic regression analysis of risk factors related to malignant ventricular tachyarrhythmia in patients with myocardial infarction
Fig 1 ROC curves of left ventricular ejection fraction and scar quality in predicting malignant ventricular arrhythmia
[1]   WAKS J W , BUXTON A E . Risk stratification for sudden cardiac death after myocardial infarction[J]. Annu Rev Med, 2018, 69 147- 164
doi: 10.1146/annurev-med-041316-090046
[2]   EPSTEIN A E, DIMARCO J P, ELLENBOGEN K A, et al. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society[J/OL]. Circulation, 2013, 127(3): e283-e352.
[3]   宋慧慧, 楚英杰 . 心肌梗死后心脏性猝死预测因素研究进展[J]. 中华实用诊断与治疗杂志, 2016, 30 (2): 105- 107
SONG Huihui , CHU Yingjie . Research progress in predicting factors for sudden cardiac death after myocardial infarction[J]. Journal of Chinese Practical Diagnosis and Therapy, 2016, 30 (2): 105- 107
[4]   蔡仁慧, 赵新湘, 孙林 . 心脏磁共振技术在心肌梗死后心室重构中的应用[J]. 中国循环杂志, 2015, 30 (9): 926- 928
CAI Renhui , ZHAO Xinxiang , SUN Lin . Application of cardiac magnetic resonance imaging in ventricular remodeling after myocardial infarction[J]. Chinese Circulation Journal, 2015, 30 (9): 926- 928
doi: 10.3969/j.issn.1000-3614.2015.09.026
[5]   陈榆舒, 陈伟, 郑捷 et al. 心脏磁共振成像评价缺血性心力衰竭心肌纤维化研究进展及应用[J]. 中国医学影像技术, 2016, 32 (3): 449- 452
CHEN Yushu , CHEN Wei , ZHENG Jie et al. Research progress and application of cardiac MR in myocardial fibrosis in ischemic heart failure[J]. Chinese Journal of Medical Imaging Technology, 2016, 32 (3): 449- 452
[6]   ROES S D , KAANDORP T A , MARSAN N A et al. Agreement and disagreement between contrast-enhanced magnetic resonance imaging and nuclear imaging for assessment of myocardial viability[J]. Eur J Nucl Med Mol Imaging, 2009, 36 (4): 594- 601
doi: 10.1007/s00259-008-1001-0
[7]   BUXTON A E . Identifying the high risk patient with coronary artery disease-is ejection fraction all you need?[J]. J Cardiovasc Electrophysiol, 2005, 16 (Suppl 1): S25- S27
[8]   PRIDE Y B , GIUSEFFI J L , MOHANAVELU S et al. Relation between infarct size in ST-segment elevation myocardial infarction treated successfully by percutaneous coronary intervention and left ventricular ejection fraction three months after the infarct[J]. Am J Cardiol, 2010, 106 (5): 635- 640
doi: 10.1016/j.amjcard.2010.04.012
[9]   KLEM I , WEINSAFT J W , BAHNSON T D et al. Assessment of myocardial scarring improves risk stratification in patients evaluated for cardiac defibrillator implantation[J]. J Am Coll Cardiol, 2012, 60 (5): 408- 420
doi: 10.1016/j.jacc.2012.02.070
[10]   IZQUIERDO M , RUIZ-GRANELL R , BONANAD C et al. Value of early cardiovascular magnetic resonance for the prediction of adverse arrhythmic cardiac events after a first noncomplicated ST-segment-elevation myocardial infarction[J]. Circ Cardiovasc Imaging, 2013, 6 (5): 755- 761
doi: 10.1161/CIRCIMAGING.113.000702
[11]   GIBBS T , VILLA A , SAMMUT E et al. Quantitative assessment of myocardial scar heterogeneity using cardiovascular magnetic resonance texture analysis to risk stratify patients post-myocardial infarction[J]. Clin Radiol, 2018, 73 (12): 1059.e17- 1059.e26
doi: 10.1016/j.crad.2018.08.012
[12]   DISERTORI M , RIGONI M , PACE N et al. Myocardial fibrosis assessment by LGE is a powerful predictor of ventricular tachyarrhythmias in ischemic and nonischemic LV dysfunction: A meta-analysis[J]. JACC Cardiovasc Imaging, 2016, 9 (9): 1046- 1055
doi: 10.1016/j.jcmg.2016.01.033
[1] ZHANG Dandan,WANG Junmei. Prenatal diagnosis and management of fetal hepatic hemangioma[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 439-445.
[2] SHAO Hua,LIU Fei,ZHANG Wei,WANG Lixin,CHEN Bin,JIANG Junhao,DONG Zhihui,SHI Yun,GUO Daqiao,FU Weiguo. Clinical features and surgical treatment of neurilemmoma versus carotid body tumors at bifurcation of carotid artery[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 583-587.
[3] YE Jianyu,SUN Ziyu,HU Weiwei. Roles of astrocytes in cerebral infarction and related therapeutic strategies[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 493-498.
[4] CHEN Shujun,SHAO Guoliang,SHAO Feng,ZHANG Minming. Diffusion-weighted imaging texture features in differentiation of malignant from benign nonpalpable breast lesions for patients with microcalcifications-only in mammography[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 400-404.
[5] LI Chen,ZHU Yao,YANG Jinhua,XU Dongsheng,WANG Jianbing,CHEN Kun,LI Qilong. Incidence of lung cancer in Jiashan, Zhejiang province: trend analysis from 1987 to 2016 and projection from 2017 to 2019[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 367-373.
[6] LOU Yelin,ZHOU Yimin,LU Hong,LYU Weiguo. Establishment of a prognostic model for preterm delivery in women after cervical conization[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 351-356.
[7] HE Yuxian,ZHENG Liangrong. Effect of spinal cord stimulation on myocardial ischemia/infarction[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 201-206.
[8] JIANG Xiyi,LI Lu,TANG Huijuan,CHEN Tianhui. Multiple risk factors prediction models for high risk population of colorectal cancer[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 194-200.
[9] ZHANG Yi,ZHANG Li,ZHANG Qiyu,HONG Weilong,LIN Xiaohua. microRNA-222 regulates proliferation and apoptosis of fibroblasts in hypertrophic scar via matrix metalloproteinase 1[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 609-617.
[10] YANG Rong, YAO Linpeng, ZHANG Siying, CHEN Feng. Rat endothelial progenitor cells labeled with Molday IONTM EverGreen and in vitro MRI study[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 481-486.
[11] ZHANG Ge'er, PAN Zimin. Gestational trophoblastic diseases in cesarean scar: an analysis of 20 cases[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 529-536.
[12] LI Aijing, PAN Yuning, CHEN Bin, XIA Jianbi, GAN Fang, JIN Yinhua, ZHENG Jianjun. Association of parameters in dynamic contrast-enhanced MRI using reference region model with prognostic factors and molecular subtypes of breast cancer[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 505-510.
[13] PAN Yao, CHEN Jieyu, YU Risheng. Accurate imaging diagnosis and evaluation of pancreatic cancer[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 462-467.
[14] ZHANG Siying, CHEN Feng. Research progress of CT/MRI parametric response map in precision evaluation of therapeutic response of cancer patients[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 468-472.
[15] WANG Subo, ZHAO Zhenhua, HU Hongjie, YANG Jianfeng, ZHAO Li, YANG Liming, WANG Cheng. Application of dynamic-contrast enhanced magnetic resonance pharmacokinetic models in differential diagnosis of cellular uterine leiomyoma[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 498-504.