|
|
Genetic analysis of newborns with abnormal metabolism of 3-hydroxyisovalerylcarnitine |
WU Dingwen1( ),LU Bin2,YANG Jianbin1,YANG Rulai1,HUANG Xinwen1,TONG Fan1,ZHENG Jing1,ZHAO Zhengyan1,*( ) |
1. Zhejiang Neonatal Screening Center, Department of Genetics and Metabolism, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China 2. Zhejiang Biosan Biochemical Technologies Co. Ltd, Hangzhou 310012, China |
|
|
Abstract Objective: To investigate the genetic characterization of 3-hydroxyisovalerylcarnitine (C5-OH) metabolic abnormality in neonates. Methods: Fifty two newborns with increased C5-OH, C5-OH/C3 and C5-OH/C8 detected by tandem mass spectrometry during neonatal screening were enrolled in the study. Genomic DNA was extracted from the whole blood samples of 52 cases and their parents. Seventy-nine genes associated with genetic and metabolic diseases including MCCC1, MCCC2 were targeted by liquid capture technique. Variation information of these genes was examined by high-throughput sequencing and bioinformatic analysis, and then was classified based on the American College of Medical Genetics and Genomics (ACMG) standards and guidelines. The genetic types were classified as wild-type, MCCC1-maternal-mutation, MCCC1-paternal-mutation and MCCC2-mutation. Wilcoxon rank-sum test was performed for the increased multiples of C5-OH calculated in neonatal screening. Results: Twenty one MCCC1 variants (14 novel) were identified in 37 cases, 6 MCCC2 variants (5 novel) in 4 cases. The increased multiple of C5-OH calculated in MCCC1-maternal-mutation and MCCC2-mutation groups were significantly higher than that in wild-type group (all P < 0.05), while there was no significant difference between MCCC1-paternal-mutation group and wild-type group (P>0.05). Conclusion: Mutations on MCCC1 and MCCC2 genes are the major genetic causes for the increased C5-OH in neonates, and maternal single heterozygous mutation can contribute to the moderately to severely increased C5-OH.
|
Received: 05 March 2019
Published: 30 October 2019
|
|
Corresponding Authors:
ZHAO Zhengyan
E-mail: 6506157@zju.edu.cn;zhaozy@zju.edu.cn
|
3-羟基异戊酰基肉碱代谢异常新生儿遗传学分析
目的: 探讨新生儿3-羟基异戊酰基肉碱(C5-OH)代谢异常的遗传学原因。方法: 收集2018年1月至12月在浙江省新生儿遗传代谢病筛查中心经串联质谱法筛查结果为C5-OH增高的52例新生儿的资料,包括新生儿筛查与复查随访的C5-OH、C5-OH/C3、C5-OH/C8检测数据,并换算成C5-OH增高倍数。采用液相捕获技术靶向捕获MCCC1、MCCC2等79个遗传代谢病相关基因,通过高通量测序和生物信息学分析获取基因的突变信息,参考美国医学遗传学与基因组学学会(ACMG)分类标准进行分级。依据基因检测情况,将C5-OH增高新生儿分为未检出突变组、MCCC1母源突变组、MCCC1父源突变组、MCCC2突变组,采用威尔科克森秩和检验分析不同组间C5-OH增高倍数的差异。结果: 37例检出MCCC1突变,涉及21种突变型,其中14种为新发现的突变型;4例检出MCCC2突变,涉及6种突变型,其中5种为新发现的突变型。MCCC1母源突变组、MCCC2突变组的C5-OH增高倍数均高于未检出突变组(均P < 0.05),MCCC1父源突变组的C5-OH增高倍数与未检出突变组差异无统计学意义(P>0.05)。结论: MCCC1、MCCC2基因突变是导致新生儿血C5-OH增高的主要遗传学原因,其中母源性单杂合突变可导致中重度C5-OH增高。
关键词:
代谢缺陷, 先天性/血液,
有机酸类/血液,
酰基辅酶A/缺乏,
基因/遗传学,
质谱分析法,
新生儿筛查
|
|
[1] |
KORMAN S H . Inborn errors of isoleucine degradation:a review[J]. Mol Genet Metab, 2006, 89 (4): 289- 299
doi: 10.1016/j.ymgme.2006.07.010
|
|
|
[2] |
CATANZANO F , OMBRONE D , DI STEFANO C et al. The first case of mitochondrial acetoacetyl-CoA thiolase deficiency identified by expanded newborn metabolic screening in Italy:the importance of an integrated diagnostic approach[J]. J Inherit Metab Dis, 2010, 33 Suppl 3:S91- S94
|
|
|
[3] |
RAMSAY J , MORTON J , NORRIS M et al. Organic acid disorders[J]. Ann Transl Med, 2018, 6 (24): 472
doi: 10.21037/atm.2018.12.39
|
|
|
[4] |
KU C S , COOPER D N , POLYCHRONAKOS C et al. Exome sequencing:dual role as a discovery and diagnostic tool[J]. Ann Neurol, 2012, 71 (1): 5- 14
doi: 10.1002/ana.22647
|
|
|
[5] |
RICHARDS S , AZIZ N , BALE S et al. Standards and guidelines for the interpretation of sequence variants:a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17 (5): 405- 424
doi: 10.1038/gim.2015.30
|
|
|
[6] |
OMBRONE D , GIOCALIERE E , FORNI G et al. Expanded newborn screening by mass spectrometry:New tests, future perspectives[J]. Mass Spectrom Rev, 2016, 35 (1): 71- 84
doi: 10.1002/mas.21463
|
|
|
[7] |
YUNUS Z M , RAHMAN S A , CHOYY S et al. Pilot study of newborn screening of inborn error of metabolism using tandem mass spectrometry in Malaysia:outcome and challenges[J]. J Pediatr Endocrinol Metab, 2016, 29 (9): 1031- 1039
|
|
|
[8] |
黄新文, 杨建滨, 童凡 et al. 串联质谱技术对新生儿遗传代谢病的筛查及随访研究[J]. 中华儿科杂志, 2011, 49 (10): 765- 770
doi: 10.3760/cma.j.issn.0578-1310.2011.10.013
|
|
|
[9] |
WOJCIK M H , WIERENGA K J , RODAN L H et al. Beta-ketothiolase deficiency presenting with metabolic stroke after a normal newborn screen in two individuals[J]. JIMD Rep, 2018, 39:45- 54
|
|
|
[10] |
GRUNERT S C , SCHLATTER S M , SCHMITT R N et al. 3-Hydroxy-3-methylglutaryl-coenzyme A lyase deficiency:Clinical presentation and outcome in a series of 37 patients[J]. Mol Genet Metab, 2017, 121 (3): 206- 215
doi: 10.1016/j.ymgme.2017.05.014
|
|
|
[11] |
BALASUBRAMANIAM S , LEWIS B , MOCK D M et al. Leigh-like syndrome due to homoplasmic m.8993T > G variant with hypocitrullinemia and unusual biochemical features suggestive of multiple carboxylase deficiency (MCD)[J]. JIMD Rep, 2017, 33:99- 107
|
|
|
[12] |
YANG L , YANG J , ZHANG T et al. Identification of eight novel mutations and transcript analysis of two splicing mutations in Chinese newborns with MCC deficiency[J]. Clin Genet, 2015, 88 (5): 484- 488
doi: 10.1111/cge.12535
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|