Please wait a minute...
J Zhejiang Univ (Med Sci)  2019, Vol. 48 Issue (2): 224-229    DOI: 10.3785/j.issn.1008-9292.2019.04.16
Biomarkers of cardiac surgery-associated acute kidney injury: a narrative review
WU Binbin(),YANG Yi*()
Department of Nephrology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
Download: HTML( 19 )   PDF(892KB)
Export: BibTeX | EndNote (RIS)      


Cardiac surgery-related acute kidney injury (CSA-AKI) is a common and serious complication after cardiac surgery in adults. Currently, there is no specific examination method, and the diagnosis relying on serum creatinine and urine volume changes is of hysteresis. Biomarkers with the potential to predict CSA-AKI have become the focus in recent years. Clinical studies have shown that neutrophil gelatinase related lipid transporters and cell cycle inhibitors are of high diagnostic value; liver fatty acid binding protein can be used to assist in the diagnosis of CSA-AKI; microRNAs help to assess the poor prognosis of patients; the combined application of biomarkers may be used to predict the occurrence of CSA-AKI. CSA-AKI biomarkers provide the possibility for early clinical diagnosis and timely intervention, and are expected to become a new breakthrough in the diagnosis and treatment of CSA-AKI.

Key wordsCardiac surgical procedures/adverse effects      Acute kidney injury/etiology      Biomarkers/blood      Biomarkers/analysis      Review     
Received: 03 July 2018      Published: 24 July 2019
CLC:  R654.2  
Corresponding Authors: YANG Yi     E-mail:;
Cite this article:

WU Binbin,YANG Yi. Biomarkers of cardiac surgery-associated acute kidney injury: a narrative review. J Zhejiang Univ (Med Sci), 2019, 48(2): 224-229.

URL:     OR



关键词: 心脏外科手术/副作用,  急性肾损伤/病因学,  生物标记/血液,  生物标记/分析,  综述 
[1]   WANG Y , BELLOMO R . Cardiac surgery-associated acute kidney injury:risk factors, pathophysiology and treatment[J]. Nat Rev Nephrol, 2017, 13 (11): 697- 711
doi: 10.1038/nrneph.2017.119
[2]   FUHRMAN D Y , KELLUM J A . Epidemiology and pathophysiology of cardiac surgery-associated acute kidney injury[J]. Curr Opin Anaesthesiol, 2017, 30 (1): 60- 65
[3]   XU X , NIE S , LIU Z et al. Epidemiology and clinical correlates of AKI in Chinese hospitalized adults[J]. Clin J Am Soc Nephrol, 2015, 10 (9): 1510- 1518
doi: 10.2215/CJN.02140215
[4]   LEWINGTON A J , CERDá J , MEHTA R L . Raising awareness of acute kidney injury:a global perspective of a silent killer[J]. Kidney Int, 2013, 84 (3): 457- 467
doi: 10.1038/ki.2013.153
[5]   VANMASSENHOVE J , KIELSTEIN J , J?RRES A et al. Management of patients at risk of acute kidney injury[J]. Lancet, 2017, 389 (10084): 2139- 2151
doi: 10.1016/S0140-6736(17)31329-6
[6]   BELLOMO R , RONCO C , KELLUMJ A et al. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs:the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) group[J]. Crit Care, 2004, 8 (4): R204- R212
doi: 10.1186/cc2872
[7]   MEHTA R L , KELLUM J A , SHAH S V et al. Acute Kidney Injury Network:report of an initiative to improve outcomes in acute kidney injury[J]. Crit Care, 2007, 11 (2): R31
doi: 10.1186/cc5713
[8]   KHWAJA A . KDIGO clinical practice guidelines for acute kidney injury[J]. Nephron Clin Pract, 2012, 120 (4): c179- c184
[9]   O'NEAL J B , SHAW A D , BILLINGS F T . Acute kidney injury following cardiac surgery:current understanding and future directions[J]. Crit Care, 2016, 20 (1): 187
doi: 10.1186/s13054-016-1352-z
[10]   ZHOU F , LUO Q , WANG L et al. Diagnostic value of neutrophil gelatinase-associated lipocalin for early diagnosis of cardiac surgery-associated acute kidney injury:a meta-analysis[J]. Eur J Cardiothorac Surg, 2016, 49 (3): 746- 755
doi: 10.1093/ejcts/ezv199
[11]   KRAWCZESKI C D , GOLDSTEIN S L , WOO J G et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass[J]. J Am Coll Cardiol, 2011, 58 (22): 2301- 2309
doi: 10.1016/j.jacc.2011.08.017
[12]   PARIKH C R , DEVARAJAN P , ZAPPITELLI M et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery[J]. J Am Soc Nephrol, 2011, 22 (9): 1737- 1747
doi: 10.1681/ASN.2010111163
[13]   DE GEUS H R , RONCO C , HAASE M et al. The cardiac surgery-associated neutrophil gelatinase-associated lipocalin (CSA-NGAL) score:A potential tool to monitor acute tubular damage[J]. J Thorac Cardiovasc Surg, 2016, 151 (6): 1476- 1481
doi: 10.1016/j.jtcvs.2016.01.037
[14]   XU Y , XIE Y , SHAO X et al. L-FABP:A novel biomarker of kidney disease[J]. Clin Chim Acta, 2015, 445:85- 90
doi: 10.1016/j.cca.2015.03.017
[15]   KASHANI K , CHEUNGPASITPORN W , RONCO C . Biomarkers of acute kidney injury:the pathway from discovery to clinical adoption[J]. Clin Chem Lab Med, 2017, 55 (8): 1074- 1089
doi: 10.1515/cclm-2016-0973
[16]   SUSANTITAPHONG P , SIRIBAMRUNGWONG M , DOI K et al. Performance of urinary liver-type fatty acid-binding protein in acute kidney injury:a meta-analysis[J]. Am J Kidney Dis, 2013, 61 (3): 430- 439
doi: 10.1053/j.ajkd.2012.10.016
[17]   HO J , TANGRI N , KOMENDA P et al. Urinary, plasma, and serum biomarkers' utility for predicting acute kidney injury associated with cardiac surgery in adults:a meta-analysis[J]. Am J Kidney Dis, 2015, 66 (6): 993- 1005
doi: 10.1053/j.ajkd.2015.06.018
[18]   ZENG X F , LI J M , TAN Y et al. Performance of urinary NGAL and L-FABP in predicting acute kidney injury and subsequent renal recovery:a cohort study based on major surgeries[J]. Clin Chem Lab Med, 2014, 52 (5): 671- 678
[19]   PARIKH C R , THIESSEN-PHILBROOK H , GARG A X et al. Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery[J]. Clin J Am Soc Nephrol, 2013, 8 (7): 1079- 1088
doi: 10.2215/CJN.10971012
[20]   LI Y F , JING Y , HAO J et al. MicroRNA-21 in the pathogenesis of acute kidney injury[J]. Protein Cell, 2013, 4 (11): 813- 819
doi: 10.1007/s13238-013-3085-y
[21]   DU J, CAO X, ZOU L, et al. MicroRNA-21 and risk of severe acute kidney injury and poor outcomes after adult cardiac surgery[J/OL]. PLoS One, 2013, 8(5): e63390.
[22]   GAEDE L , LIEBETRAU C , BLUMENSTEIN J et al. Plasma microRNA-21 for the early prediction of acute kidney injury in patients undergoing major cardiac surgery[J]. Nephrol Dial Transplant, 2016, 31 (5): 760- 766
doi: 10.1093/ndt/gfw007
[23]   ARVIN P , SAMIMAGHAM H R , MONTAZERGHAEM H et al. Early detection of cardiac surgery associated acute kidney injury by microRNA-21[J]. Bratisl Lek Listy, 2017, 118:626- 631
[24]   RODIER F , CAMPISI J , BHAUMIK D . Two faces of p53:aging and tumor suppression[J]. Nucleic Acids Res, 2007, 35 (22): 7475- 7484
doi: 10.1093/nar/gkm744
[25]   MEKONTSO D A , WARE L B , BAGSHAW S M . How could biomarkers of ARDS and AKI drive clinical strategies?[J]. Intensive Care Med, 2016, 42 (5): 800- 802
doi: 10.1007/s00134-016-4231-9
[26]   HOSTE E A , MCCULLOUGH P A , KASHANI K et al. Derivation and validation of cutoffs for clinical use of cell cycle arrest biomarkers[J]. Nephrol Dial Transplant, 2014, 29 (11): 2054- 2061
doi: 10.1093/ndt/gfu292
[27]   GUNNERSON K J , SHAW A D , CHAWLA L S et al. TIMP2·IGFBP7 biomarker panel accurately predicts acute kidney injury in high-risk surgical patients[J]. J Trauma Acute Care Surg, 2016, 80:243- 249
doi: 10.1097/TA.0000000000000912
[28]   WESTHOFF J H, T?NSHOFF B, WALDHERR S, et al. Urinary tissue inhibitor of metalloproteinase-2(TIMP-2)·insulin-like growth factor-binding protein 7(IGFBP7) predicts adverse outcome in pediatric acute kidney injury[J/OL]. PLoS ONE, 2015, 10: e0143628.
[29]   HEUNG M , ORTEGA L M , CHAWLA L S et al. Common chronic conditions do not affect performance of cell cycle arrest biomarkers for risk stratification of acute kidney injury[J]. Nephrol Dial Transplant, 2016, 31 (10): 1633- 1640
doi: 10.1093/ndt/gfw241
[30]   WANG Y , ZOU Z , JIN J et al. Urinary TIMP-2 and IGFBP7 for the prediction of acute kidney injury following cardiac surgery[J]. BMC Nephrol, 2017, 18 (1): 177
doi: 10.1186/s12882-017-0592-8
[31]   JIA H M , HUANG L F , ZHENG Y et al. Prognostic value of cell cycle arrest biomarkers in patients at high risk for acute kidney injury:A systematic review and meta-analysis[J]. Nephrology(Carlton), 2017, 22 (11): 831- 837
[32]   BASU R K , WONG H R , KRAWCZESKI C D et al. Combining functional and tubular damage biomarkers improves diagnostic precision for acute kidney injury after cardiac surgery[J]. J Am Coll Cardiol, 2014, 64 (25): 2753- 2762
doi: 10.1016/j.jacc.2014.09.066
[33]   ARUN O , CELIK G , OC B et al. Renal effects of coronary artery bypass graft surgery in diabetic and non-diabetic patients:a study with urinary neutrophil gelatinase-associated lipocalin and serum cystatin C[J]. Kidney Blood Press Res, 2015, 40 (2): 141- 152
doi: 10.1159/000368490
[34]   ELMEDANY S M , NAGA S S , ELSHARKAWY R et al. Novel urinary biomarkers and the early detection of acute kidney injury after open cardiac surgeries[J]. J Crit Care, 2017, 40:171- 177
doi: 10.1016/j.jcrc.2017.03.029
[35]   MCILROY D R , FARKAS D , PAN K et al. Combining novel renal injury markers with delta serum creatinine early after cardiac surgery and risk-stratification for serious adverse outcomes:an exploratory analysis[J]. J Cardiothorac Vasc Anesth, 2018, 32 (5): 2190- 2200
doi: 10.1053/j.jvca.2017.12.052
[1] ZHU Ziling, TAN Jing, DENG Hong. Nucleus translocation of membrane/cytoplasm proteins in tumor cells[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 318-325.
[2] ZHANG Jianmin. Advances in surgical treatment of ischemic cerebrovascular disease[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 233-240.
[3] WU Yuxing, ZHANG Shihong, CHEN Zhong. The roles of habenula and related neural circuits in neuropsychiatric diseases[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 310-317.
[4] ZHANG Yunzhu, ZHU Chunpeng, LU Xinliang. Advances in serum biomarkers for early diagnosis of gastric cancer[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 326-333.
[5] Baboo Kalianee Devi,CHEN Zhengyun,ZHANG Xinmei. Progress on medical treatment in the management of adenomyosis[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 142-147.
[6] YANG Kun,HU Xiaosheng. Research progress on miR-21 in heart diseases[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 214-218.
[7] XU Li,XU Ming,TONG Xiangmin. Effects of aerobic glycolysis on pathogenesis and drug resistance of non-Hodgkin lymphoma[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 219-223.
[8] ZHAO Shihao,ZHANG Xue,KE Yuehai. Progress on correlation between cell senescence and idiopathic pulmonary fibrosis[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 111-115.
[9] SONG Fangjun,GUO Hongtao. Progress on structural biology of voltage-gated ion channels[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 25-33.
[10] HONG Feifan,LI Yuezhou. Application of mechanosensitive channels in sonogenetics[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 34-38.
[11] XIAO Li,TONG Xiaoyong. Advances in molecular mechanism of vascular remodeling in pulmonary arterial hypertension[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 102-110.
[12] SHI Jing,FENG Jue. New inhibitors targeting bacterial RNA polymerase[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 44-49.
[13] SUN Boqiang,WANG Qiongyan,PAN Dongli. Mechanisms of herpes simplex virus latency and reactivation[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 89-101.
[14] SHEN Xiameng,LYU Weiguo. Research advances on the role of exosomes in chemotherapy resistance of ovarian cancer[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 116-120.
[15] CAO Liqin,SHI Jimin. Graft failure in allogeneic hematopoietic stem cell trans-plantation[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 651-658.