Please wait a minute...
J Zhejiang Univ (Med Sci)  2019, Vol. 48 Issue (2): 219-223    DOI: 10.3785/j.issn.1008-9292.2019.04.15
Effects of aerobic glycolysis on pathogenesis and drug resistance of non-Hodgkin lymphoma
XU Li1(),XU Ming2,TONG Xiangmin3,*()
1. Department of Oncology, the First People's Hospital of Tongxiang, Tongxiang 314500, Zhejiang Province, China
2. Department of Traditional Chinese Medicine, the First People's Hospital of Tongxiang, Tongxiang 314500, Zhejiang Province, China
3. Department of Hematology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
Download: HTML( 11 )   PDF(884KB)
Export: BibTeX | EndNote (RIS)      


It has been shown that aerobic glycolysis (AG) plays an important role in the pathogenesis and resistance mechanism of non-Hodgkin lymphoma (NHL) in recent years. Signaling pathway related to abnormal activation of AG can increase the level of AG in lymphatic and hematopoietic cells, while the enzymes related to the activity of AG are involved in the pathogenesis and prognosis of NHL. Drugs that inhibit AG can also inhibit NHL cells in vitro. Drugs inhibiting AG may increase the sensitivity of chemotherapeutic agents and prevent drug resistance. In this article, the role of signaling pathway proteins and regulatory genes related to AG in the pathogenesis and drug resistance of NHL are reviewed, and the AG as a target in the clinical diagnosis and treatment of NHL is discussed.

Key wordsLymphoma, non-hodgkin/etiology      Drug tolerance      Glycolysis      Oxygen      Review     
Received: 16 December 2018      Published: 24 July 2019
CLC:  R364  
Corresponding Authors: TONG Xiangmin     E-mail:;
Cite this article:

XU Li,XU Ming,TONG Xiangmin. Effects of aerobic glycolysis on pathogenesis and drug resistance of non-Hodgkin lymphoma. J Zhejiang Univ (Med Sci), 2019, 48(2): 219-223.

URL:     OR



关键词: 淋巴瘤, 非霍奇金/病因学,  药物耐受性,  糖酵解,  氧,  综述 
[1]   ARMITAGE J O , GASCOYNE R D , LUNNING M A et al. Non-hodgkin lymphoma[J]. The Lancet, 2017, 390 (10091): 298- 310
doi: 10.1016/S0140-6736(16)32407-2
[2]   GIATROMANOLAKI A , KOUKOURAKIS M I , PEZZELLA F et al. Lactate dehydrogenase 5 expression in non-Hodgkin B-cell lymphomas is associated with hypoxia regulated proteins[J]. Leuk Lymphoma, 2008, 49 (11): 2181- 2186
doi: 10.1080/10428190802450629
[3]   WANG T , SHAO X , XU B et al. Role of the abnormal HIF-1α-glycolysis-aerobic oxidation pathway in non-Hodgkin lymphoma and the intervention study[J]. Hematol Oncol, 2017, 35 (S2): 294- 295
[4]   FALLANCA F , ALONGI P , INCERTI E et al. Diagnostic accuracy of FDG PET/CT for clinical evaluation at the end of treatment of HL and NHL:a comparison of the Deauville Criteria(DC) and the International Harmonization Project Criteria (IHPC)[J]. Eur J Nucl Med Mol Imaging, 2016, 43 (10): 1837- 1848
doi: 10.1007/s00259-016-3390-9
[5]   PANG Y Y , WANG T , CHEN F Y et al. Glycolytic inhibitor 2-deoxy-d-glucose suppresses cell proliferation and enhances methylprednisolone sensitivity in non-Hodgkin lymphoma cells through down-regulation of HIF-1α and c-MYC[J]. Leukemia Lymphoma, 2015, 56 (6): 1821- 1830
doi: 10.3109/10428194.2014.963575
[6]   SRIKANTH L , SUNITHA M M , VENKATESH K et al. Anaerobic glycolysis and HIFα expression in haematopoietic stem cells explains its quiescence nature[J]. J Stem Cells, 2015, 10 (2): 97- 106
[7]   WANG Y H . Differential dependence on aerobic glycolysis in normal and malignant hematopoietic stem and progenitor cells to sustain daughter cell production[J]. Blood, 2013, 122 (21): 793
[8]   TAKUBO K , NAGAMATSU G , KOBAYASHIC I et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells[J]. Cell Stem Cell, 2013, 12 (1): 49- 61
doi: 10.1016/j.stem.2012.10.011
[9]   CHANG C H , CURTIS J D , MAGGI L B et al. Posttranscriptional control of T cell effector function by aerobic glycolysis[J]. Cell, 2013, 153 (6): 1239- 1251
doi: 10.1016/j.cell.2013.05.016
[10]   ELEFTHERIADIS T , PISSAS G , KARIOTI A et al. The indoleamine 2, 3-dioxygenase inhibitor 1-methyl-tryptophan suppresses mitochondrial function, induces aerobic glycolysis and decreases interleukin-10 production in human lymphocytes[J]. Immunol Invest, 2012, 41 (5): 507- 520
doi: 10.3109/08820139.2012.682244
[11]   MUSHTAQ M, DAREKAR S, KLEIN G, et al. Different mechanisms of regulation of the Warburg effect in lymphoblastoid and burkitt lymphoma cells[J/OL]. PLoS One, 2015, 10(8): e0136142.
[12]   PANG Y Y , WANG T , CHEN F Y et al. Glycolytic inhibitor 2-deoxy-d-glucose suppresses cell proliferation and enhances methylprednisolone sensitivity in non-Hodgkin lymphoma cells through down-regulation of HIF-1α and c-MYC[J]. Leuk Lymphoma, 2015, 56 (6): 1821- 1830
doi: 10.3109/10428194.2014.963575
[13]   POORE B , ORTEGAMOLINA A , NGUYUN C et al. Metabolic characterization of follicular lymphoma transformation[J]. Cancer Res, 2015, 75 (15 Supplement): 1183- 1183
[14]   PAVLIDES S , WHITAKER-MENEZES D , CASTELLO-CROS R et al. The reverse Warburg effect:aerobic glycolysis in cancer associated fibroblasts and the tumor stroma[J]. Cell Cycle, 2009, 8 (23): 3984- 4001
doi: 10.4161/cc.8.23.10238
[15]   GUILLOTON F , CARON G , MéNARD C et al. Mesenchymal stromal cells orchestrate follicular lymphoma cell niche through the CCL2-dependent recruitment and polarization of monocytes[J]. Blood, 2012, 119 (11): 2556- 2567
doi: 10.1182/blood-2011-08-370908
[16]   CHIAVARINA B , MARTINEZOUTSCHOORN U E , WHITAKERMENEZES D et al. Metabolic reprogramming and two-compartment tumor metabolism:opposing role(s) of HIF1α and HIF2α in tumor-associated fibroblasts and human breast cancer cells[J]. Cell Cycle, 2012, 11 (17): 3280- 3289
doi: 10.4161/cc.21643
[17]   LIU Y , ZHAO Y , GUO L . Effects of orexin A on glucose metabolism in human hepatocellular carcinoma in vitro via PI3K/Akt/mTOR-dependent and -independent mechanism[J]. Mol Cell Endocrinol, 2016, 420:208- 216
doi: 10.1016/j.mce.2015.11.002
[18]   SUN Q , CHEN X , MA J et al. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth[J]. Proc Natl Acad Sci U S A, 2011, 108 (10): 4129- 4134
doi: 10.1073/pnas.1014769108
[19]   XU Z Z , XIA Z G , WANG A H et al. Activation of the PI3K/AKT/mTOR pathway in diffuse large B cell lymphoma:clinical significance and inhibitory effect of rituximab[J]. Ann Hematol, 2013, 92 (10): 1351- 1358
doi: 10.1007/s00277-013-1770-9
[20]   BHATT A P , JACOBS S R , FREEMERMAN A J et al. Dysregulation of fatty acid synthesis and glycolysis in non-Hodgkin lymphoma[J]. Proc Natl Acad Sci U S A, 2012, 109 (29): 11818- 11823
doi: 10.1073/pnas.1205995109
[21]   IYENGAR S , CLEAR A , BODOR C et al. P110α-mediated constitutive PI3K signaling limits the efficacy of p110δ-selective inhibition in mantle cell lymphoma, particularly with multiple relapse[J]. Blood, 2013, 121 (12): 2274- 2284
doi: 10.1182/blood-2012-10-460832
[22]   ZENG L , MORINIBU A , KOBAYASHI M et al. Aberrant IDH3α expression promotes malignant tumor growth by inducing HIF-1-mediated metabolic reprogramming and angiogenesis[J]. Oncogene, 2015, 34 (36): 4758- 4766
doi: 10.1038/onc.2014.411
[23]   KIM J W , GAO P , LIU Y C et al. HIF-1 and dysregulated c-Myc cooperatively induces VEGF and metabolic switches, HK2 and PDK1[J]. Mol Cell Biol, 2007, 27 (21): 7381- 7393
doi: 10.1128/MCB.00440-07
[24]   EL M N , CARO-MALDONADO A , RAMíREZ-PEINADO S et al. Sugar-free approaches to cancer cell killing[J]. Oncogene, 2011, 30 (3): 253- 264
doi: 10.1038/onc.2010.466
[25]   庞淯阳, 王婷, 陈芳源 et al. 2-脱氧-D-葡萄糖对非霍奇金淋巴瘤细胞株Namalwa和SU-DHL-4糖酵解通路的干预研究[J]. 诊断学理论与实践, 2012, 11 (2): 116- 120
PANG Yuyang , WANG Ting , CHEN Fangyuan et al. The effect of 2-deoxy-D-glucose as a glycolysis pathway antagonist on non-Hodgkin's lymphoma cell lines in vitro[J]. Journal of Diagnostics Concepts & Practice, 2012, 11 (2): 116- 120
[26]   NOBLE R A , BELL N , BLAIR H et al. Inhibition of monocarboxyate transporter 1 by AZD3965 as a novel therapeutic approach for diffuse large B-cell lymphoma and Burkitt lymphoma[J]. Haematologica, 2017, 102 (7): 1247- 1257
doi: 10.3324/haematol.2016.163030
[27]   邵霞, 蔡佳翌, 许壁榆 et al. 硼替佐米联合有氧氧化抑制剂寡霉素靶向Burkitt淋巴瘤细胞Raji的杀伤作用及机制[J]. 肿瘤, 2016, 36 (2): 127- 139
SHAO Xia , CAI Jiayi , XU Biyu et al. Role of bortezomib combined with aerobic oxidation inhibitor oligomycin in suppressing proliferation of Burkitt lymphoma cell line Raji[J]. Tumor, 2016, 36 (2): 127- 139
[28]   ROBINSON G L , DINSDALE D , MACFARLANE M et al. Switching from aerobic glycolysis to oxidative phosphorylation modulates the sensitivity of mantle cell lymphoma cells to TRAIL[J]. Oncogene, 2012, 31 (48): 4996- 5006
doi: 10.1038/onc.2012.13
[29]   许壁榆, 邵霞, 张义炜 et al. shRNA干扰己糖激酶Ⅱ基因表达对人淋巴瘤细胞恶性生物学行为的影响[J]. 肿瘤, 2017, 37 (4): 313- 323
XU Biyu , SHAO Xia , ZHANG Yiwei et al. Effects of shRNA interfering hexokinaseⅡ gene expression on the malignant biological behaviors of human lymphoma cells[J]. Tumor, 2017, 37 (4): 313- 323
[30]   GU L , XIE L , ZUO C et al. Targeting mTOR/p70S6K/glycolysis signaling pathway restores glucocorticoid sensitivity to 4E-BP1 null Burkitt Lymphoma[J]. BMC Cancer, 2015, 15:529
doi: 10.1186/s12885-015-1535-z
[31]   RAEZ L E , PAPADOPOULOS K , RICART A D et al. A phase I dose-escalation trial of 2-Deoxy-d-glucose alone or combined with docetaxel in patients with advanced solid tumors[J]. Cancer Chemother Pharmacol, 2013, 71 (2): 523- 530
doi: 10.1007/s00280-012-2045-1
[1] ZHU Ziling, TAN Jing, DENG Hong. Nucleus translocation of membrane/cytoplasm proteins in tumor cells[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 318-325.
[2] ZHANG Jianmin. Advances in surgical treatment of ischemic cerebrovascular disease[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 233-240.
[3] WU Yuxing, ZHANG Shihong, CHEN Zhong. The roles of habenula and related neural circuits in neuropsychiatric diseases[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 310-317.
[4] ZHANG Yunzhu, ZHU Chunpeng, LU Xinliang. Advances in serum biomarkers for early diagnosis of gastric cancer[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 326-333.
[5] Baboo Kalianee Devi,CHEN Zhengyun,ZHANG Xinmei. Progress on medical treatment in the management of adenomyosis[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 142-147.
[6] WU Binbin,YANG Yi. Biomarkers of cardiac surgery-associated acute kidney injury: a narrative review[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 224-229.
[7] YANG Kun,HU Xiaosheng. Research progress on miR-21 in heart diseases[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 214-218.
[8] ZHAO Shihao,ZHANG Xue,KE Yuehai. Progress on correlation between cell senescence and idiopathic pulmonary fibrosis[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 111-115.
[9] SONG Fangjun,GUO Hongtao. Progress on structural biology of voltage-gated ion channels[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 25-33.
[10] HONG Feifan,LI Yuezhou. Application of mechanosensitive channels in sonogenetics[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 34-38.
[11] XIAO Li,TONG Xiaoyong. Advances in molecular mechanism of vascular remodeling in pulmonary arterial hypertension[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 102-110.
[12] SHI Jing,FENG Jue. New inhibitors targeting bacterial RNA polymerase[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 44-49.
[13] SUN Boqiang,WANG Qiongyan,PAN Dongli. Mechanisms of herpes simplex virus latency and reactivation[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 89-101.
[14] SHEN Xiameng,LYU Weiguo. Research advances on the role of exosomes in chemotherapy resistance of ovarian cancer[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 116-120.
[15] CAO Liqin,SHI Jimin. Graft failure in allogeneic hematopoietic stem cell trans-plantation[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 651-658.