|
|
Roles of macrophages in formation and progression of intracranial aneurysms |
WANG Yaqi( ),JIN Jinghua*( ) |
Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China |
|
|
Abstract Studies have shown that chronic inflammatory response plays a key role in intracranial aneurysms (IA) formation and progression, and macrophages regulate the formation and progression of IA through a variety of pathways. Bone marrow monocyte-derived macrophages and resident-tissue macrophages infiltrate the vessel wall, after infiltration macrophages are polarized into various polarization phenotypes dominated by M1-like and M2-like cells. Polarized phenotypes of macrophages can regulate the formation and progression of intracranial aneurysms by releasing cytokines and regulating the inflammatory response of other immune cells, as well as release different cytokines to regulate the process of extracellular matrix remodeling. Some important progresses have been made in the clinical detection and treatment in targeting macrophages. This review provides a summary on the pathogenesis of IA and potential drug targets to prevent the formation and rupture of intracranial aneurysms.
|
Received: 20 November 2018
Published: 24 July 2019
|
|
Corresponding Authors:
JIN Jinghua
E-mail: 21618530@zju.edu.cn;jhjin@zju.edu.cn
|
巨噬细胞在颅内动脉瘤发生发展中的作用研究进展
大量研究表明慢性炎性反应是颅内动脉瘤(IA)形成和破裂的核心环节,作为IA病变中最多见的炎症细胞,巨噬细胞通过多种途径调控IA的发生、发展。骨髓来源单核细胞分化而来的巨噬细胞及组织固有巨噬细胞浸润血管壁;浸润后的巨噬细胞受不同刺激极化为以M1型和M2型巨噬细胞为主的各类极化表型;各种极化表型的巨噬细胞既能通过释放细胞因子和调控其他免疫细胞调控炎性反应,也能释放不同细胞因子作用于细胞外基质重塑过程,从而调控颅内动脉瘤的发生、发展。临床上,以巨噬细胞为靶点的检测和治疗手段已取得一定进展。本文为深入理解IA发病机制和寻找阻止颅内动脉瘤形成和破裂的药物治疗提供理论依据。
关键词:
巨噬细胞/病理学,
颅内动脉瘤/病理学,
炎症,
肿瘤坏死因子α/分泌,
基质金属蛋白酶类,
免疫, 细胞,
核因子κB
|
|
[1] |
VLAK M H , ALGRA A , BRANDENBURG R et al. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period:a systematic review and meta-analysis[J]. Lancet Neurol, 2011, 10 (7): 626- 636
doi: 10.1016/S1474-4422(11)70109-0
|
|
|
[2] |
DE ROOIJ N K , LINN F H , VAN DER PLAS J A et al. Incidence of subarachnoid haemorrhage:a systematic review with emphasis on region, age, gender and time trends[J]. J Neurol Neurosurg Psychiatry, 2007, 78 (12): 1365- 1372
doi: 10.1136/jnnp.2007.117655
|
|
|
[3] |
WIEBERS D O , WHISNANT J P , HUSTON J et al. Unruptured intracranial aneurysms:natural history, clinical outcome, and risks of surgical and endovascular treatment[J]. Lancet, 2003, 362 (9378): 103- 110
doi: 10.1016/S0140-6736(03)13860-3
|
|
|
[4] |
FR?SEN J , PⅡPPO A , PAETAU A et al. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture:histological analysis of 24 unruptured and 42 ruptured cases[J]. Stroke, 2004, 35 (10): 2287- 2293
doi: 10.1161/01.STR.0000140636.30204.da
|
|
|
[5] |
AOKI T , KATAOKA H , MORIMOTO M et al. Macrophage-derived matrix metalloproteinase-2 and -9 promote the progression of cerebral aneurysms in rats[J]. Stroke, 2007, 38 (1): 162- 169
|
|
|
[6] |
KANEMATSU Y , KANEMATSU M , KURIHARA C et al. Critical roles of macrophages in the formation of intracranial aneurysm[J]. Stroke, 2011, 42 (1): 173- 178
|
|
|
[7] |
SHIMADA K , FURUKAWA H , WADA K et al. Protective role of peroxisome proliferator-activated receptor-γ in the development of intracranial aneurysm rupture[J]. Stroke, 2015, 46 (6): 1664- 1672
doi: 10.1161/STROKEAHA.114.007722
|
|
|
[8] |
SHAKUR S F , ALARAJ A , MENDOZA-ELIAS N et al. Hemodynamic characteristics associated with cerebral aneurysm formation in patients with carotid occlusion[J]. J Neurosurg, 2018, 1- 6
|
|
|
[9] |
ZHANG X , YAO Z Q , KARUNA T et al. The role of wall shear stress in the parent artery as an independent variable in the formation status of anterior communicating artery aneurysms[J]. Eur Radiol, 2019, 29 (2): 689- 698
doi: 10.1007/s00330-018-5624-7
|
|
|
[10] |
EPELMAN S , LAVINE K J , RANDOLPH G J . Origin and functions of tissue macrophages[J]. Immunity, 2014, 41 (1): 21- 35
doi: 10.1016/j.immuni.2014.06.013
|
|
|
[11] |
DAVIES L C , JENKINS S J , ALLEN J E et al. Tissue-resident macrophages[J]. Nat Immunol, 2013, 14 (10): 986- 995
doi: 10.1038/ni.2705
|
|
|
[12] |
GAUTIER E L , SHAY T , MILLER J et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages[J]. Nat Immunol, 2012, 13 (11): 1118- 1128
doi: 10.1038/ni.2419
|
|
|
[13] |
SCHULZ C , GOMEZ P E , CHORRO L et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells[J]. Science, 2012, 336 (6077): 86- 90
doi: 10.1126/science.1219179
|
|
|
[14] |
HASHIMOTO D , CHOW A , NOIZAT C et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes[J]. Immunity, 2013, 38 (4): 792- 804
doi: 10.1016/j.immuni.2013.04.004
|
|
|
[15] |
FANG P , LI X , DAI J et al. Immune cell subset differentiation and tissue inflammation[J]. J Hematol Oncol, 2018, 11 (1): 97
|
|
|
[16] |
XUE J , SCHMIDT S V , SANDER J et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation[J]. Immunity, 2014, 40 (2): 274- 288
doi: 10.1016/j.immuni.2014.01.006
|
|
|
[17] |
HASAN D , CHALOUHI N , JABBOUR P et al. Macrophage imbalance (M1 vs. M2) and upregulation of mast cells in wall of ruptured human cerebral aneurysms:preliminary results[J]. J Neuroinflammation, 2012, 9:222
|
|
|
[18] |
ZHANG H F , ZHAO M G , LIANG G B et al. Dysregulation of CD4(+) T cell subsets in intracranial aneurysm[J]. DNA Cell Biol, 2016, 35 (2): 96- 103
doi: 10.1089/dna.2015.3105
|
|
|
[19] |
THOMAS A J , OGILVY C S , GRIESSENAUER C J et al. Macrophage CD163 expression in cerebrospinal fluid:association with subarachnoid hemorrhage outcome[J]. J Neurosurg, 2018, 1- 7
|
|
|
[20] |
NOWICKI K W , HOSAKA K , WALCH F J et al. M1 macrophages are required for murine cerebral aneurysm formation[J]. J Neurointerv Surg, 2018, 10 (1): 93- 97
doi: 10.1136/neurintsurg-2016-012911
|
|
|
[21] |
AOKI T , KATAOKA H , SHIMAMURA M et al. NF-kappaB is a key mediator of cerebral aneurysm formation[J]. Circulation, 2007, 116 (24): 2830- 2840
doi: 10.1161/CIRCULATIONAHA.107.728303
|
|
|
[22] |
THEUS M H , BRICKLER T , MEZA A L et al. Loss of NLRX1 exacerbates neural tissue damage and NF-κB signaling following brain injury[J]. J Immunol, 2017, 199 (10): 3547- 3558
doi: 10.4049/jimmunol.1700251
|
|
|
[23] |
AOKI T , FRO`` SEN J , FUKUDA M et al. Prostaglandin E2-EP2-NF-κB signaling in macrophages as a potential therapeutic target for intracranial aneurysms[J]. Sci Signal, 2017, 10 (465): pii:eaah6037
doi: 10.1126/scisignal.aah6037
|
|
|
[24] |
LUO D , GUO Y , CHENG Y et al. Natural product celastrol suppressed macrophage M1 polarization against inflammation in diet-induced obese mice via regulating Nrf2/HO-1, MAP kinase and NF-κB pathways[J]. Aging(Albany NY), 2017, 9 (10): 2069- 2082
|
|
|
[25] |
HUANG F , ZHAO J L , WANG L et al. miR-148a-3p mediates notch signaling to promote the differentiation and M1 activation of macrophages[J]. Front Immunol, 2017, 8:1327
doi: 10.3389/fimmu.2017.01327
|
|
|
[26] |
YANG Q W , MOU L , LV F L et al. Role of Toll-like receptor 4/NF-kappaB pathway in monocyte-endothelial adhesion induced by low shear stress and ox-LDL[J]. Biorheology, 2005, 42 (3): 225- 236
|
|
|
[27] |
NISHIMURA M . Toll-like receptor 4 expression during cerebral aneurysm formation[J]. J Neurosurg, 2013, 119 (3): 825- 827
doi: 10.3171/2013.6.JNS09329a
|
|
|
[28] |
KURKI M I , HAKKINEN S K , FROSEN J et al. Upregulated signaling pathways in ruptured human saccular intracranial aneurysm wall:an emerging regulative role of Toll-like receptor signaling and nuclear factor-κB, hypoxia-inducible factor-1A, and ETS transcription factors[J]. Neurosurgery, 2011, 68 (6): 1667- 1676
doi: 10.1227/NEU.0b013e318210f001
|
|
|
[29] |
BUCHANAN M M , HUTCHINSON M , WATKINS L R et al. Toll-like receptor 4 in CNS pathologies[J]. J Neurochem, 2010, 114 (1): 13- 27
|
|
|
[30] |
AOKI T , NISHIMURA M , MATSUOKA T et al. PGE(2)-EP(2) signalling in endothelium is activated by haemodynamic stress and induces cerebral aneurysm through an amplifying loop via NF-κB[J]. Br J Pharmacol, 2011, 163 (3): 1237- 1249
|
|
|
[31] |
IKEDO T, MINAMI M, KATAOKA H, et al. Dipeptidyl peptidase-4 inhibitor anagliptin prevents intracranial aneurysm growth by suppressing macrophage infiltration and activation[J/OL]. J Am Heart Assoc, 2017, 6(6): pii: e004777.
|
|
|
[32] |
NAHRENDORF M , SWIRSKI F K . Abandoning M1/M2 for a network model of macrophage function[J]. Circ Res, 2016, 119 (3): 414- 417
doi: 10.1161/CIRCRESAHA.116.309194
|
|
|
[33] |
GOSSELIN D , LINK V M , ROMANOSKI C E et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities[J]. Cell, 2014, 159 (6): 1327- 1340
doi: 10.1016/j.cell.2014.11.023
|
|
|
[34] |
JAYARAMAN T , BERENSTEIN V , LI X et al. Tumor necrosis factor alpha is a key modulator of inflammation in cerebral aneurysms[J]. Neurosurgery, 2005, 57 (3): 558- 564
doi: 10.1227/01.NEU.0000170439.89041.D6
|
|
|
[35] |
ZHANG H F , ZHAO M G , LIANG G B et al. Expression of pro-inflammatory cytokines and the risk of intracranial aneurysm[J]. Inflammation, 2013, 36 (6): 1195- 1200
doi: 10.1007/s10753-013-9655-6
|
|
|
[36] |
STARKE R M , CHALOUHI N , JABBOUR P M et al. Critical role of TNF-α in cerebral aneurysm formation and progression to rupture[J]. J Neuroinflammation, 2014, 11:77
doi: 10.1186/1742-2094-11-77
|
|
|
[37] |
AOKI T , FUKUDA M , NISHIMURA M et al. Critical role of TNF-alpha-TNFR1 signaling in intracranial aneurysm formation[J]. Acta Neuropathol Commun, 2014, 2:34
doi: 10.1186/2051-5960-2-34
|
|
|
[38] |
ALI M S , STARKE R M , JABBOUR P M et al. TNF-α induces phenotypic modulation in cerebral vascular smooth muscle cells:implications for cerebral aneurysm pathology[J]. J Cereb Blood Flow Metab, 2013, 33 (10): 1564- 1573
doi: 10.1038/jcbfm.2013.109
|
|
|
[39] |
MORIWAKI T , TAKAGI Y , SADAMASA N et al. Impaired progression of cerebral aneurysms in interleukin-1beta-deficient mice[J]. Stroke, 2006, 37 (3): 900- 905
doi: 10.1161/01.STR.0000204028.39783.d9
|
|
|
[40] |
AOKI T , KATAOKA H , ISHIBASHI R et al. Reduced collagen biosynthesis is the hallmark of cerebral aneurysm:contribution of interleukin-1beta and nuclear factor-kappaB[J]. Arterioscler Thromb Vasc Biol, 2009, 29 (7): 1080- 1086
doi: 10.1161/ATVBAHA.108.180760
|
|
|
[41] |
WKE I , HOSHI N , SHOUVAL D S et al. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages[J]. Science, 2017, 356 (6337): 513- 519
doi: 10.1126/science.aal3535
|
|
|
[42] |
CHEN J , YANG L , CHEN Y et al. Controlled release of osteopontin and interleukin-10 from modified endovascular coil promote cerebral aneurysm healing[J]. J Neurol Sci, 2016, 360:13- 17
doi: 10.1016/j.jns.2015.11.037
|
|
|
[43] |
MARTINEZ F O , GORDON S . The M1 and M2 paradigm of macrophage activation:time for reassessment[J]. F1000Prime Rep, 2014, 6:13
|
|
|
[44] |
ITALIANI P , BORASCHI D . From monocytes to M1/M2 macrophages:phenotypical vs. functional differentiation[J]. Front Immunol, 2014, 5:514
|
|
|
[45] |
ISHIBASHI R , AOKI T , NISHIMURA M et al. Contribution of mast cells to cerebral aneurysm formation[J]. Curr Neurovasc Res, 2010, 7 (2): 113- 124
doi: 10.2174/156720210791184916
|
|
|
[46] |
SHI J , JOHANSSON J , WOODLING N S et al. The prostaglandin E2 E-prostanoid 4 receptor exerts anti-inflammatory effects in brain innate immunity[J]. J Immunol, 2010, 184 (12): 7207- 7218
doi: 10.4049/jimmunol.0903487
|
|
|
[47] |
LIU J , KUWABARA A , KAMIO Y et al. Human mesenchymal stem cell-derived microvesicles prevent the rupture of intracranial aneurysm in part by suppression of mast cell activation via a PGE2-dependent mechanism[J]. Stem Cells, 2016, 34 (12): 2943- 2955
doi: 10.1002/stem.v34.12
|
|
|
[48] |
XU J , MA F , YAN W et al. Identification of the soluble form of tyrosine kinase receptor Axl as a potential biomarker for intracranial aneurysm rupture[J]. BMC Neurol, 2015, 15:23
doi: 10.1186/s12883-015-0282-8
|
|
|
[49] |
ETMINAN N , DREIER R , BUCHHOLZB A et al. Age of collagen in intracranial saccular aneurysms[J]. Stroke, 2014, 45 (6): 1757- 1763
doi: 10.1161/STROKEAHA.114.005461
|
|
|
[50] |
CAIRD J , NAPOLI C , TAGGART C et al. Matrix metalloproteinases 2 and 9 in human atherosclerotic and non-atherosclerotic cerebral aneurysms[J]. Eur J Neurol, 2006, 13 (10): 1098- 1105
doi: 10.1111/ene.2006.13.issue-10
|
|
|
[51] |
JIN D , SHENG J , YANG X et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases expression in human cerebral ruptured and unruptured aneurysm[J]. Surg Neurol, 2007, 68 Suppl 2:S11- S16
|
|
|
[52] |
NUKI Y , TSOU T L , KURIHARA C et al. Elastase-induced intracranial aneurysms in hypertensive mice[J]. Hypertension, 2009, 54 (6): 1337- 1344
doi: 10.1161/HYPERTENSIONAHA.109.138297
|
|
|
[53] |
AOKI T , KATAOKA H , MORIWAKI T et al. Role of TIMP-1 and TIMP-2 in the progression of cerebral aneurysms[J]. Stroke, 2007, 38 (8): 2337- 2345
doi: 10.1161/STROKEAHA.107.481838
|
|
|
[54] |
KILIC T , SOHRABIFAR M , KURTKAYA O et al. Expression of structural proteins and angiogenic factors in normal arterial and unruptured and ruptured aneurysm walls[J]. Neurosurgery, 2005, 57 (5): 997- 1007
doi: 10.1227/01.NEU.0000180812.77621.6C
|
|
|
[55] |
MOREL S , DIAGBOUGA M R , DUPUY N et al. Correlating clinical risk factors and histological features in ruptured and unruptured human intracranial aneurysms:the Swiss AneuX Study[J]. J Neuropathol Exp Neurol, 2018, 77 (7): 555- 566
doi: 10.1093/jnen/nly031
|
|
|
[56] |
AOKI T , KATAOKA H , NISHIMURA M et al. Regression of intracranial aneurysms by simultaneous inhibition of nuclear factor-kappaB and Ets with chimeric decoy oligodeoxynucleotide treatment[J]. Neurosurgery, 2012, 70 (6): 1534- 1543
doi: 10.1227/NEU.0b013e318246a390
|
|
|
[57] |
TURJMAN A S , TURJMAN F , EDELMAN E R . Role of fluid dynamics and inflammation in intracranial aneurysm formation[J]. Circulation, 2014, 129 (3): 373- 382
doi: 10.1161/CIRCULATIONAHA.113.001444
|
|
|
[58] |
CHALOUHI N , HOH B L , HASAN D . Review of cerebral aneurysm formation, growth, and rupture[J]. Stroke, 2013, 44 (12): 3613- 3622
doi: 10.1161/STROKEAHA.113.002390
|
|
|
[59] |
HASAN D M , MAHANEY K B , BROWN R D et al. Aspirin as a promising agent for decreasing incidence of cerebral aneurysm rupture[J]. Stroke, 2011, 42 (11): 3156- 3162
doi: 10.1161/STROKEAHA.111.619411
|
|
|
[60] |
HASAN D M, CHALOUHI N, JABBOUR P, et al. Evidence that acetylsalicylic acid attenuates inflammation in the walls of human cerebral aneurysms: preliminary results[J/OL]. J Am Heart Assoc, 2013, 2(1): e000019.
|
|
|
[61] |
GARCíA-RODRíGUEZ L A , GAIST D , MORTON J et al. Antithrombotic drugs and risk of hemorrhagic stroke in the general population[J]. Neurology, 2013, 81 (6): 566- 574
doi: 10.1212/WNL.0b013e31829e6ffa
|
|
|
[62] |
HASAN D , CHALOUHI N , JABBOUR P et al. Early change in ferumoxytol-enhanced magnetic resonance imaging signal suggests unstable human cerebral aneurysm:a pilot study[J]. Stroke, 2012, 43 (12): 3258- 3265
doi: 10.1161/STROKEAHA.112.673400
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|