Please wait a minute...
J Zhejiang Univ (Med Sci)  2019, Vol. 48 Issue (1): 111-115    DOI: 10.3785/j.issn.1008-9292.2019.02.16
    
Progress on correlation between cell senescence and idiopathic pulmonary fibrosis
ZHAO Shihao(),ZHANG Xue,KE Yuehai*()
College of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
Download: HTML( 15 )   PDF(490KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Cellular senescence is a key factor driving age-related diseases. Recent studies have revealed that senescence-associated secretory phenotype, telomere attrition, epigenetic changes, and mitochondrial autophagy damage may mediate the pathogenesis of senescence-related idiopathic pulmonary fibrosis (IPF). Reducing the level of cellular senescence or clearing senescent cells can down-regulate the expression of fibrosis factors and alleviate the symptoms of IPF. In this review, we outlined the role and mechanism of cellular senescence in IPF.



Key wordsCell aging/pathology      Fibroblasts/pathology      Epithelial cells/pathology      Pulmonary fibrosis/pathology      Review     
Received: 12 October 2018      Published: 13 May 2019
CLC:  R563  
Corresponding Authors: KE Yuehai     E-mail: 21718492@zju.edu.cn;yke@zju.edu.cn
Cite this article:

ZHAO Shihao,ZHANG Xue,KE Yuehai. Progress on correlation between cell senescence and idiopathic pulmonary fibrosis. J Zhejiang Univ (Med Sci), 2019, 48(1): 111-115.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2019.02.16     OR     http://www.zjujournals.com/med/Y2019/V48/I1/111


细胞衰老与特发性肺纤维化的相关性研究进展

细胞衰老是驱动衰老相关疾病的关键因素。衰老相关分泌表型、端粒损伤、表观遗传学改变、线粒体自噬受损等介导了细胞衰老相关特发性肺纤维化的发病;降低细胞衰老水平或清除衰老细胞可下调纤维化因子表达,缓解特发性肺纤维化进程。本文就近年来细胞衰老在特发性肺纤维化中的作用及机制研究进展作一综述。


关键词: 细胞衰老/病理学,  成纤维细胞/病理学,  上皮细胞/病理学,  肺纤维化/病理学,  综述 
[1]   RAGHU G , COLLARD H R , EGAN J J et al. An official ATS/ERS/JRS/ALAT statement:idiopathic pulmonary fibrosis:evidence-based guidelines for diagnosis and management[J]. Am J Respir Crit Care Med, 2011, 183 (6): 788- 824
doi: 10.1164/rccm.2009-040GL
[2]   SELMAN M , KING T E , PARDO A . Idiopathic pulmonary fibrosis:prevailing and evolving hypotheses about its pathogenesis and implications for therapy[J]. Ann Intern Med, 2001, 134 (2): 136- 151
doi: 10.7326/0003-4819-134-2-200101160-00015
[3]   RAGHU G , ANSTROM K J , KING T E et al. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis[J]. N Engl J Med, 2012, 366 (21): 1968- 1977
doi: 10.1056/NEJMoa1113354
[4]   RAGHU G , WEYCKER D , EDELSBERG J et al. Incidence and prevalence of idiopathic pulmonary fibrosis[J]. Am J Respir Crit Care Med, 2006, 174 (7): 810- 816
doi: 10.1164/rccm.200602-163OC
[5]   MINAGAWA S , ARAYA J , NUMATA T et al. Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-beta-induced senescence of human bronchial epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2011, 300 (3): L391- L401
doi: 10.1152/ajplung.00097.2010
[6]   YANAI H , SHTEINBERG A , PORAT Z et al. Cellular senescence-like features of lung fibroblasts derived from idiopathic pulmonary fibrosis patients[J]. Aging(Albany NY), 2015, 7 (9): 664- 672
[7]   BAKER D J , WIJSHAKE T , TCHKONIA T et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders[J]. Nature, 2011, 479 (7372): 232- 236
doi: 10.1038/nature10600
[8]   HAYFLICK L , MOORHEAD P S . The serial cultivation of human diploid cell strains[J]. Exp Cell Res, 1961, 25:585- 621
doi: 10.1016/0014-4827(61)90192-6
[9]   COPPé J P , PATIL C K , RODIER F et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor[J]. PLoS Biol, 2008, 6 (12): 2853- 2868
[10]   VAN DEURSEN J M . The role of senescent cells in ageing[J]. Nature, 2014, 509 (7501): 439- 446
doi: 10.1038/nature13193
[11]   GIRE V , DULIC V . Senescence from G2 arrest, revisited[J]. Cell Cycle, 2015, 14 (3): 297- 304
doi: 10.1080/15384101.2014.1000134
[12]   ZHAO H , BAUZON F , FU H et al. Skp2 deletion unmasks a p27 safeguard that blocks tumorigenesis in the absence of pRb and p53 tumor suppressors[J]. Cancer Cell, 2013, 24 (5): 645- 659
doi: 10.1016/j.ccr.2013.09.021
[13]   LEHMANN M , KORFEI M , MUTZE K et al. Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo[J]. Eur Respir J, 2017, 50 (2): 1602367
doi: 10.1183/13993003.02367-2016
[14]   MORA A L , ROJAS M , PARDO A et al. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease[J]. Nat Rev Drug Discov, 2017, 16 (11): 755- 772
doi: 10.1038/nrd.2017.170
[15]   MU?OZ-ESPíN D , SERRANO M . Cellular senescence:from physiology to pathology[J]. Nat Rev Mol Cell Biol, 2014, 15 (7): 482- 496
doi: 10.1038/nrm3823
[16]   SCHAFER M J , WHITE T A , ⅡJIMA K et al. Cellular senescence mediates fibrotic pulmonary disease[J]. Nat Commun, 2017, 8:14532
doi: 10.1038/ncomms14532
[17]   AOSHIBA K , TSUJI T , KAMEYAMA S et al. Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury[J]. Exp Toxicol Pathol, 2013, 65 (7-8): 1053- 1062
doi: 10.1016/j.etp.2013.04.001
[18]   SHIVSHANKAR P , BRAMPTON C , MIYASATO S et al. Caveolin-1 deficiency protects from pulmonary fibrosis by modulating epithelial cell senescence in mice[J]. Am J Respir Cell Mol Biol, 2012, 47 (1): 28- 36
doi: 10.1165/rcmb.2011-0349OC
[19]   KADOTA T , FUJITA Y , YOSHIOKA Y et al. Emerging role of extracellular vesicles as a senescence-associated secretory phenotype:Insights into the pathophysiology of lung diseases[J]. Mol Aspects Med, 2018, 60:92- 103
doi: 10.1016/j.mam.2017.11.005
[20]   FUJITA Y , ARAYA J , ITO S et al. Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis[J]. J Extracell Vesicles, 2015, 4:28388
doi: 10.3402/jev.v4.28388
[21]   PAN J , LI D , XU Y et al. Inhibition of Bcl-2/xl with ABT-263 selectively kills senescent type Ⅱ pneumocytes and reverses persistent pulmonary fibrosis induced by ionizing radiation in mice[J]. Int J Radiat Oncol Biol Phys, 2017, 99 (2): 353- 361
doi: 10.1016/j.ijrobp.2017.02.216
[22]   REDDY M , FONSECA L , GOWDA S et al. Human adipose-derived mesenchymal stem cells attenuate early stage of bleomycin induced pulmonary fibrosis:comparison with pirfenidone[J]. Int J Stem Cells, 2016, 9 (2): 192- 206
doi: 10.15283/ijsc16041
[23]   CHAMBERS D C , ENEVER D , ILIC N et al. A phase 1b study of placenta-derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis[J]. Respirology, 2014, 19 (7): 1013- 1018
doi: 10.1111/resp.12343
[24]   STANLEY S E , ARMANIOS M . The short and long telomere syndromes:paired paradigms for molecular medicine[J]. Curr Opin Genet Dev, 2015, 33:1- 9
doi: 10.1016/j.gde.2015.06.004
[25]   SNETSELAAR R , VAN BATENBURG A A , VAN OOSTERHOUT M F M et al. Short telomere length in IPF lung associates with fibrotic lesions and predicts survival[J]. PLoS One, 2017, 12 (12): e0189467
doi: 10.1371/journal.pone.0189467
[26]   NAIKAWADI R P , DISAYABUTR S , MALLAVIA B et al. Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis[J]. JCI Insight, 2016, 1 (14): e86704
[27]   ALDER J K , BARKAUSKAS C E , LIMJUNYAWONG N et al. Telomere dysfunction causes alveolar stem cell failure[J]. Proc Natl Acad Sci U S A, 2015, 112 (16): 5099- 5104
doi: 10.1073/pnas.1504780112
[28]   TOWNSLEY D M , DUMITRIU B , YOUNG N S . Danazol treatment for telomere diseases[J]. N Engl J Med, 2016, 375 (11): 1095- 1096
doi: 10.1056/NEJMc1607752
[29]   WILEY C D , VELARDE M C , LECOT P et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype[J]. Cell Metab, 2016, 23 (2): 303- 314
doi: 10.1016/j.cmet.2015.11.011
[30]   GARCíA-PRAT L , MARTíNEZ-VICENTE M , PERDIGUERO E et al. Autophagy maintains stemness by preventing senescence[J]. Nature, 2016, 529 (7584): 37- 42
doi: 10.1038/nature16187
[31]   ARAYA J , KOJIMA J , TAKASAKA N et al. Insufficient autophagy in idiopathic pulmonary fibrosis[J]. Am J Physiol Lung Cell Mol Physiol, 2013, 304 (1): L56- L69
doi: 10.1152/ajplung.00213.2012
[32]   BUENO M , LAI Y C , ROMERO Y et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis[J]. J Clin Invest, 2015, 125 (2): 521- 538
doi: 10.1172/JCI74942
[33]   DISAYABUTR S , KIM E K , CHA S I et al. miR-34 miRNAs regulate cellular senescence in type Ⅱ alveolar epithelial cells of patients with idiopathic pulmonary fibrosis[J]. PLoS One, 2016, 11 (6): e0158367
doi: 10.1371/journal.pone.0158367
[34]   CUI H , GE J , XIE N et al. miR-34a promotes fibrosis in aged lungs by inducing alveolarepithelial dysfunctions[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 312 (3): L415- L424
doi: 10.1152/ajplung.00335.2016
[35]   YANAI H , SHTEINBERG A , PORAT Z et al. Cellular senescence-like features of lung fibroblasts derived from idiopathic pulmonary fibrosis patients[J]. Aging(Albany NY), 2015, 7 (9): 664- 672
[36]   WYNES M W , EDELMAN B L , KOSTYK A G et al. Increased cell surface fas expression is necessary and sufficient to sensitize lung fibroblasts to fas ligation-induced apoptosis:implications for fibroblast accumulation in idiopathic pulmonary fibrosis[J]. J Immunol, 2011, 187 (1): 527- 537
doi: 10.4049/jimmunol.1100447
[37]   KRIZHANOVSKY V , YON M , DICKINS R A et al. Senescence of activated stellate cells limits liver fibrosis[J]. Cell, 2008, 134 (4): 657- 667
doi: 10.1016/j.cell.2008.06.049
[38]   LI Y , LIANG J , YANG T et al. Hyaluronan synthase 2 regulates fibroblast senescence in pulmonary fibrosis[J]. Matrix Biol, 2016, 55:35- 48
doi: 10.1016/j.matbio.2016.03.004
[39]   ROMERO Y , BUENO M , RAMIREZ R et al. mTORC1 activation decreases autophagy in aging and idiopathic pulmonary fibrosis and contributes to apoptosis resistance in IPF fibroblasts[J]. Aging Cell, 2016, 15 (6): 1103- 1112
doi: 10.1111/acel.2016.15.issue-6
[40]   HECKER L , LOGSDON N J , KURUNDKAR D et al. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance[J]. Sci Transl Med, 2014, 6 (231): 231ra47
doi: 10.1126/scitranslmed.3008182
[1] Baboo Kalianee Devi, CHEN Zhengyun, ZHANG Xinmei. Progress on medical treatment in the management of adenomyosis[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 142-147.
[2] WU Binbin, YANG Yi. Biomarkers of cardiac surgery-associated acute kidney injury: a narrative review[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 224-229.
[3] YANG Kun, HU Xiaosheng. Research progress on miR-21 in heart diseases[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 214-218.
[4] XU Li, XU Ming, TONG Xiangmin. Effects of aerobic glycolysis on pathogenesis and drug resistance of non-Hodgkin lymphoma[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 219-223.
[5] SONG Fangjun,GUO Hongtao. Progress on structural biology of voltage-gated ion channels[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 25-33.
[6] SHI Jing,FENG Jue. New inhibitors targeting bacterial RNA polymerase[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 44-49.
[7] SUN Boqiang,WANG Qiongyan,PAN Dongli. Mechanisms of herpes simplex virus latency and reactivation[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 89-101.
[8] SHEN Xiameng,LYU Weiguo. Research advances on the role of exosomes in chemotherapy resistance of ovarian cancer[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 116-120.
[9] HONG Feifan,LI Yuezhou. Application of mechanosensitive channels in sonogenetics[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 34-38.
[10] XIAO Li,TONG Xiaoyong. Advances in molecular mechanism of vascular remodeling in pulmonary arterial hypertension[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 102-110.
[11] XIANG Yilang,WU Ziheng,ZHANG Hongkun. Progress on in situ fenestration during thoracic endovascular aortic repair[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 617-622.
[12] CAO Liqin,SHI Jimin. Graft failure in allogeneic hematopoietic stem cell trans-plantation[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 651-658.
[13] TANG Hexiao,BAI Yuquan,SHEN Wulin,ZHAO Jinping. Research progress on interleukin-6 in lung cancer[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 659-664.
[14] ZHAO Huihui,TANG Huifang. Research progress on composite animal models of inflammatory bowel disease based on gene knockout[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 665-670.
[15] YE Jianyu,SUN Ziyu,HU Weiwei. Roles of astrocytes in cerebral infarction and related therapeutic strategies[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 493-498.