Please wait a minute...
J Zhejiang Univ (Med Sci)  2019, Vol. 48 Issue (1): 65-74    DOI: 10.3785/j.issn.1008-9292.2019.02.11
Rictor regulates mitochondrial calcium signaling in mouse embryo stem cell-derived cardiomyocytes
SHAO Ying1(),WANG Jiadan1,2(),ZHU Danyan1,*()
1. Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
2. Department of Pharmacy, Zhejiang Xiaoshan Geriatric Hospital, Hangzhou 310006, China
Download: HTML( 19 )   PDF(8324KB)
Export: BibTeX | EndNote (RIS)      


Objective: To explore the expression, localization and regulatory effect on mitochondrial calcium signaling of Rictor in embryonic stem cell-derived cardiomyocytes (ESC-CMs). Methods: Classical embryonic stem cell cardiomyogenesis model was used for differentiation of mouse embryonic stem cells into cardiomyocytes. The location of Rictor in ESC-CMs was investigated by immunofluorescence and Western blot. The expression of Rictor in mouse embryonic stem cells was interfered with lentiviral technology, then the superposition of mitochondria and endoplasmic reticulum (ER) in ESC-CMs was detected with immunofluorescence method; the cellular ultrastructure of ESC-CMs was observed by transmission electron microscope; the mitochondrial calcium transients of ESC-CMs was detected by living cell workstation; immunoprecipitation was used to detect the interaction between 1, 5, 5-trisphosphate receptor (IP3 receptor, IP3R), glucose-regulated protein 75 (Grp75) and voltage-dependent anion channel 1 (VDAC1) in mitochondrial outer membrane; the expression of mitochondrial fusion protein (mitonusin-2, Mfn2) was detected by Western blot. Results: Rictor was mainly localized in the endoplasmic reticulum and mitochondrial-endoplasmic reticulum membrane (MAM) in ESC-CMs. Immunofluorescence results showed that Rictor was highly overlapped with ER and mitochondria in ESC-CMs. After mitochondrial and ER were labeled with Mito-Tracker Red and ER-Tracker Green, it was demonstrated that the mitochondria of the myocardial cells in the Rictor group were scattered, and the superimposition rate of mitochondria and ER was lower than that of the negative control group (P < 0.01). The MAM structures were decreased in ESC-CMs after knockdown of Rictor. The results of the living cell workstation showed that the amplitude of mitochondrial calcium transients by ATP stimulation in ESC-CMs was decreased after knockdown of Rictor (P < 0.01). The results of co-immunoprecipitation showed that the interaction between IP3R, Grp75 and VDAC1 in the MAM structure of the cardiomyocytes in the Rictor group was significantly attenuated (P < 0.01); the results of Western blot showed that the expression of Mfn2 protein was significantly decreased (P < 0.01). Conclusion: Using lentiviral technology to interfere Rictor expression in mouse embryonic stem cells, the release of calcium from the endoplasmic reticulum to mitochondria in ESC-CMs decreases, which may be affected by reducing the interaction of IP3R, Grp75, VDAC1 and decreasing the expression of Mfn2, leading to the damage of MAM structure.

Key wordsEmbryonic stem cells/cytology      Myocytes, cardiac/cytology      Mammalian target of rapamycin      Calcium signaling      Endoplasmic reticulum      Mitochondrial     
Received: 01 August 2018      Published: 13 May 2019
CLC:  R966  
Corresponding Authors: ZHU Danyan     E-mail:;;
Cite this article:

SHAO Ying,WANG Jiadan,ZHU Danyan. Rictor regulates mitochondrial calcium signaling in mouse embryo stem cell-derived cardiomyocytes. J Zhejiang Univ (Med Sci), 2019, 48(1): 65-74.

URL:     OR


目的: 探索Rictor在小鼠胚胎干细胞来源心肌细胞(ESC-CM)中的表达、定位及其对线粒体钙信号的调控作用。方法: 通过经典"悬滴-悬浮-贴壁"三步法建立ESC-CM模型。利用免疫荧光法及蛋白质印迹法观察Rictor在ESC-CM中的定位。慢病毒技术干扰小鼠胚胎干细胞Rictor表达后,采用免疫荧光法考察ESC-CM内质网与线粒体的叠加情况;通过透射电镜观察ESC-CM的超微结构;活细胞工作站测定分化后心肌细胞线粒体钙瞬变;免疫共沉淀法检测ESC-CM中1,4,5-三磷酸肌醇受体(IP3R)、葡萄糖调节蛋白75(Grp75)、线粒体外膜的电压依赖性阴离子通道1(VDAC1)间的相互作用;蛋白质印迹法检测线粒体融合蛋白2(Mfn2)的表达情况。结果: Rictor在ESC-CM中主要定位于内质网及线粒体-内质网结构偶联(MAM)域,且其表达定位与线粒体及内质网有很好的叠加。干扰Rictor后,心肌细胞线粒体部分呈散点状,线粒体与内质网的叠加率降低(P < 0.01);ESC-CM超微MAM形成减少;ATP刺激引起的ESC-CM线粒体钙瞬变幅度下降,其中钙瞬变斜率和上升峰值均降低(均P < 0.01);MAM中IP3R、Grp75、VDAC1相互作用明显减弱,且Mfn2蛋白表达降低(P < 0.01)。结论: 干扰小鼠胚胎干细胞中Rictor表达可降低ESC-CM中钙从内质网到线粒体的释放,这可能是通过影响IP3R、Grp75、VDAC1间相互作用,减少Mfn2表达,进而破坏MAM来实现的。

关键词: 胚胎干细胞/细胞学,  肌细胞, 心脏/细胞学,  哺乳动物雷帕霉素靶蛋白,  钙信号,  内质网,  线粒体 
Fig 1 Colocalization results of Rictor with endoplasmic reticulum and mitochondria in embryonic stem cell-derived cardiomyocytes
Fig 2 Expression of Rictor in various organelles of embryonic stem cell-derived cardiomyocytes
Fig 3 Confocal microscopy observation of the overlap of mitochondria and endoplasmic reticulum in embryonic stem cell-derived cardiomyocytes interference with Rictor protein expression
Fig 4 Ultrastructural observation of MAM, mitochondria and endoplasmic reticulum in embryonic stem cell-derived cardiomyocytes interference with Rictor protein expression by transmission electron microscopy
Fig 5 Immunofluorescence detection of interference with Rictor protein expression on ATP-stimulated embryonic stem cell-derived cardiomyocytes mitochondrial calcium transients
Fig 6 Fluorescence intensity of ATP-stimulated embryonic stem cell-derived cardiomyocytes interferenced with Rictor protein expression
Fig 7 Effect of interfering Rictor protein expression on Mfn2 protein expression in mouse embryonic stem cell-derived cardiomyocytes
Fig 8 Effect of interference with Rictor protein expression on the interaction of Grp75, IP3R and VDAC1 by immunoprecipitation in mouse embryonic stem cell-derived cardiomyocytes
[1]   CHIANG G G , ABRAHAM R T . Targeting the mTOR signaling network in cancer[J]. Trends Mol Med, 2007, 13 (10): 433- 442
doi: 10.1016/j.molmed.2007.08.001
[2]   LAPLANTE M , SABATINI D M . mTOR signaling at a glance[J]. J Cell Sci, 2009, 122 (Pt 20): 3589- 3594
[3]   GUERTIN D A , STEVENS D M , THOREEN C C et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1[J]. Dev Cell, 2006, 11 (6): 859- 871
doi: 10.1016/j.devcel.2006.10.007
[4]   OH W J , JACINTO E . mTOR complex 2 signaling and functions[J]. Cell Cycle, 2011, 10 (14): 2305- 2316
doi: 10.4161/cc.10.14.16586
[5]   GURUSAMY N , LEKLI I , MUKHERJEE S et al. Cardioprotection by resveratrol:a novel mechanism via autophagy involving the mTORC2 pathway[J]. Cardiovasc Res, 2010, 86 (1): 103- 112
doi: 10.1093/cvr/cvp384
[6]   BETZ C , STRACKA D , PRESCIANOTTO-BASCHONG C et al. mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology[J]. Proc Natl Acad Sci U S A, 2013, 110 (31): 12526- 12534
doi: 10.1073/pnas.1302455110
[7]   JOUAVILLE L S , PINTON P , BASTIANUTTO C et al. Regulation of mitochondrial ATP synthesis by calcium:evidence for a long-term metabolic priming[J]. Proc Natl Acad Sci U S A, 1999, 96 (24): 13807- 13812
doi: 10.1073/pnas.96.24.13807
[8]   RIZZUTO R , BRINI M , MURGIA M et al. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria[J]. Science, 1993, 262 (5134): 744- 747
doi: 10.1126/science.8235595
[9]   CSORDáS G , VáRNAI P , GOLENáRT et al. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface[J]. Mol Cell, 2010, 39 (1): 121- 132
doi: 10.1016/j.molcel.2010.06.029
[10]   KOSHIBA T , YASUKAWA K , YANAGI Y et al. Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling[J]. Sci Signal, 2011, 4 (158): ra7
[11]   PAPANICOLAOU K N , KHAIRALLAH R J , NGOH G A et al. Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes[J]. Mol Cell Biol, 2011, 31 (6): 1309- 1328
doi: 10.1128/MCB.00911-10
[12]   NAON D , ZANINELLO M , GIACOMELLO M et al. Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether[J]. Proc Natl Acad Sci U S A, 2016, 113 (40): 11249- 11254
doi: 10.1073/pnas.1606786113
[13]   YING Q L , NICHOLS J , CHAMBERS I et al. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3[J]. Cell, 2003, 115 (3): 281- 292
[14]   FU J D , LI J , TWEEDIE D et al. Crucial role of the sarcoplasmic reticulum in the developmental regulation of Ca2+ transients and contraction in cardiomyocytes derived from embryonic stem cells[J]. FASEB J, 2006, 20 (1): 181- 183
doi: 10.1096/fj.05-4501fje
[15]   MCKINSEY T A , ZHANG C L , Olson E N . Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5[J]. Proc Natl Acad Sci U S A, 2000, 97 (26): 14400- 14405
doi: 10.1073/pnas.260501497
[16]   MICHALAK M , LYNCH J , GROENENDYK J et al. Calreticulin in cardiac development and pathology[J]. Biochim Biophys Acta, 2002, 1600 (1-2): 32- 37
doi: 10.1016/S1570-9639(02)00441-7
[17]   CHUNG S , DZEJA P P , FAUSTINO R S et al. Developmental restructuring of the creatine kinase system integrates mitochondrial energetics with stem cell cardiogenesis[J]. Ann N Y Acad Sci, 2008, 1147:254- 263
doi: 10.1196/annals.1427.004
[18]   ZHENG B , WANG J , TANG L et al. mTORC1 and mTORC2 play different roles in regulating cardiomyocyte differentiation from embryonic stem cells[J]. Int J Dev Biol, 2017, 61 (1-2): 65- 72
doi: 10.1387/ijdb.160207dz
[19]   ZHENG B , WANG J , TANG L et al. Involvement of Rictor/mTORC2 in cardiomyocyte differentiation of mouse embryonic stem cells in vitro[J]. Int J Biol Sci, 2017, 13 (1): 110- 121
doi: 10.7150/ijbs.16312
[20]   SHINOZAWA T , FURUKAWA H , SATO E et al. A novel purification method of murine embryonic stem cell-and human-induced pluripotent stem cell-derived cardiomyocytes by simple manual dissociation[J]. J Biomol Screen, 2012, 17 (5): 683- 691
doi: 10.1177/1087057111434145
[21]   SHU L , HOUGHTON P J . The mTORC2 complex regulates terminal differentiation of C2C12 myoblasts[J]. Mol Cell Biol, 2009, 29 (17): 4691- 4700
doi: 10.1128/MCB.00764-09
[22]   LOU Y J , LIANG X G . Embryonic stem cell application in drug discovery[J]. Acta Pharmacol Sin, 2011, 32 (2): 152- 159
doi: 10.1038/aps.2010.194
[23]   GUO A , YANG H T . Ca2+ removal mechanisms in mouse embryonic stem cell-derived cardiomyocytes[J]. AJP:Cell Physiol, 2009, 297 (3): C732- C741
doi: 10.1152/ajpcell.00025.2009
[24]   VALLI A , ROSNER M , FUCHS C et al. Embryoid body formation of human amniotic fluid stem cells depends on mTOR[J]. Oncogene, 2010, 29 (7): 966- 977
doi: 10.1038/onc.2009.405
[25]   FRIAS M A , THOREEN C C , JAFFE J D et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s[J]. Curr Biol, 2006, 16 (18): 1865- 1870
doi: 10.1016/j.cub.2006.08.001
[26]   ZHAO X , LU S , NIE J et al. Phosphoinositide-dependent kinase 1 and mTORC2 synergistically maintain postnatal heart growth and heart function in mice[J]. Mol Cell Biol, 2014, 34 (11): 1966- 1975
doi: 10.1128/MCB.00144-14
[27]   VIDARSSON H , HYLLNER J , SARTIPY P . Differentiation of human embryonic stem cells to cardiomyocytes for in vitro and in vivo applications[J]. Stem Cell Rev, 2010, 6 (1): 108- 120
[28]   DE BRITO O M , SCORRANO L . An intimate liaison:spatial organization of the endoplasmic reticulum-mitochondria relationship[J]. EMBO J, 2010, 29 (16): 2715- 2723
doi: 10.1038/emboj.2010.177
[29]   DE BRITO O M , SCORRANO L . Mitofusin 2 tethers endoplasmic reticulum to mitochondria[J]. Nature, 2008, 456 (7222): 605- 610
doi: 10.1038/nature07534
[1] XIAO Li,TONG Xiaoyong. Advances in molecular mechanism of vascular remodeling in pulmonary arterial hypertension[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 102-110.
[2] JIANG Yanqi,YANG Yalan,YANG Ting,LI Yueling,CHEN Liling,YAN Jin,YANG Yanfang. Association of UCP2 rs659366 polymorphisms with the outcomes of patients after surgery for colorectal cancer[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 143-149.
[3] WANG Jiasheng,LUO Jianhong,ZHANG Xiaomin. From endoplasmic reticulum to Golgi apparatus:a secretory pathway controlled by signal molecules[J]. J Zhejiang Univ (Med Sci), 2013, 42(4): 472-.