Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (6): 665-670    DOI: 10.3785/j.issn.1008-9292.2018.12.16
    
Research progress on composite animal models of inflammatory bowel disease based on gene knockout
ZHAO Huihui(),TANG Huifang*()
Zhejiang University School of Medicine, Hangzhou 310058, China
Download: HTML( 10 )   PDF(1015KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Establishing a suitable animal model is important for studying the mechanism of inflammatory bowel disease (IBD) and exploring new therapeutic approaches. Although a large number of IBD single gene knockout animal models have been established, single knockout of certain genes associated with human IBD susceptibility does not manifest symptoms of IBD or manifest extremely milder symptoms, while composite animal models based on other modeling factors can better simulate the clinical features of IBD. This article mainly introduces three novel composite animal models and elaborates the possible pathogenesis of each composite model:animal models established by gene double knockout have more obvious and earlier symptoms than single-knockout models; single gene knockout model with Helicobacter infection can help to study the role of microbial infections in the pathogenesis of IBD; on the basis of gene knockout, specific deletion of certain immune cells can be used to study the role of the immune cells in the development of IBD. Among the above composite animal models, Muc2/IL-10 double knockout mice may be important animal models for IBD study.



Key wordsInflammatory bowel diseases      Mice, knockout      Disease models, animal      Review     
Received: 10 April 2018      Published: 15 March 2019
CLC:  R574  
Corresponding Authors: TANG Huifang     E-mail: 3140104256@zju.edu.cn;tanghuifang@zju.edu.cn
Cite this article:

ZHAO Huihui,TANG Huifang. Research progress on composite animal models of inflammatory bowel disease based on gene knockout. J Zhejiang Univ (Med Sci), 2018, 47(6): 665-670.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2018.12.16     OR     http://www.zjujournals.com/med/Y2018/V47/I6/665


基于基因敲除的炎性肠疾病复合动物模型研究进展

建立合适的动物模型对于研究炎症性肠疾病(IBD)的机制以及探索新的治疗途径具有重要意义。单敲除某些与人类IBD易感性相关的基因并不表现为IBD的症状或症状较轻,而结合其他造模因素建立的复合动物模型能更好地模拟IBD的临床特征。本文主要介绍了三类新型复合动物模型的具体特点:基因双重敲除动物模型较单基因敲除模型的建立周期更短、疾病症状更明显;螺杆菌复合基因敲除模型有助于研究微生物感染在IBD发病机制中的作用;在基因敲除的基础上特异性缺失某种免疫细胞可用于研究该免疫细胞在IBD发展中的作用。这些模型在一定程度上有助于探索IBD的机制,其中Muc2/IL-10双重敲除模型有望成为IBD遗传学研究的重要动物模型。


关键词: 炎性肠疾病,  小鼠, 基因敲除,  疾病模型, 动物,  综述 
[1]   ZHANG Y Z , LI Y Y . Inflammatory bowel disease:pathogenesis[J]. World J Gastroenterol, 2014, 20 (1): 91- 99
doi: 10.3748/wjg.v20.i1.91
[2]   MIZOGUCHI A . Animal models of inflammatory bowel disease[J]. Prog Mol Biol Transl Sci, 2012, 105:263- 320
doi: 10.1016/B978-0-12-394596-9.00009-3
[3]   KHOR B , GARDET A , XAVIER R J . Genetics and pathogenesis of inflammatory bowel disease[J]. Nature, 2011, 474 (7351): 307- 317
doi: 10.1038/nature10209
[4]   KVHN R , L?HLER J , RENNICK D et al. Interleukin-10-deficient mice develop chronic enterocolitis[J]. Cell, 1993, 75 (2): 263- 274
doi: 10.1016/0092-8674(93)80068-P
[5]   RENNICK D M , FORT M M . Lessons from genetically engineered animal models. Ⅻ. IL-10-deficient (IL-10(-/-) mice and intestinal inflammation[J]. Am J Physiol Gastrointest Liver Physiol, 2000, 278 (6): G829- G833
doi: 10.1152/ajpgi.2000.278.6.G829
[6]   VAN DER SLUIS M , DE KONING B A , DE BRUIJN A C et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection[J]. Gastroenterology, 2006, 131 (1): 117- 129
doi: 10.1053/j.gastro.2006.04.020
[7]   VAN DER SLUIS M , BOUMA J , VINCENT A et al. Combined defects in epithelial and immunoregulatory factors exacerbate the pathogenesis of inflammation:mucin 2-interleukin 10-deficient mice[J]. Lab Invest, 2008, 88 (6): 634- 642
doi: 10.1038/labinvest.2008.28
[8]   PODOLSKY D K . Inflammatory bowel disease[J]. N Engl J Med, 2002, 347 (6): 417- 429
doi: 10.1056/NEJMra020831
[9]   RUIZ P A , SHKODA A , KIM S C et al. IL-10 gene-deficient mice lack TGF-beta/Smad signaling and fail to inhibit proinflammatory gene expression in intestinal epithelial cells after the colonization with colitogenic Enterococcus faecalis[J]. J Immunol, 2005, 174 (5): 2990- 2999
doi: 10.4049/jimmunol.174.5.2990
[10]   FENTON J I , HURSTING S D , PERKINS S N et al. Interleukin-6 production induced by leptin treatment promotes cell proliferation in an Apc (Min/+) colon epithelial cell line[J]. Carcinogenesis, 2006, 27 (7): 1507- 1515
doi: 10.1093/carcin/bgl018
[11]   NISHIYAMA T , MITSUYAMA K , TOYONAGA A et al. Colonic mucosal interleukin 1 receptor antagonist in inflammatory bowel disease[J]. Digestion, 1994, 55 (6): 368- 373
doi: 10.1159/000201167
[12]   AKITSU A , KAKUTA S , SAIJO S et al. Rag2-deficient IL-1 receptor antagonist-deficient mice are a novel colitis model in which innate lymphoid cell-derived IL-17 is involved in the pathogenesis[J]. Exp Anim, 2014, 63 (2): 235- 246
doi: 10.1538/expanim.63.235
[13]   SHINKAI Y , RATHBUN G , LAM K P et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement[J]. Cell, 1992, 68 (5): 855- 867
doi: 10.1016/0092-8674(92)90029-C
[14]   HANSEN R , THOMSON J M , FOX J G et al. Could Helicobacter organisms cause inflammatory bowel disease?[J]. FEMS Immunol Med Microbiol, 2011, 61 (1): 1- 14
doi: 10.1111/fim.2011.61.issue-1
[15]   FOX J G , GE Z , WHARY M T et al. Helicobacter hepaticus infection in mice:models for understanding lower bowel inflammation and cancer[J]. Mucosal Immunol, 2011, 4 (1): 22- 30
doi: 10.1038/mi.2010.61
[16]   WARD J M , ANVER M R , HAINES D C et al. Inflammatory large bowel disease in immunodeficient mice naturally infected with Helicobacter hepaticus[J]. Lab Anim Sci, 1996, 46 (1): 15- 20
[17]   KULLBERG M C , WARD J M , GORELICK P L et al. Helicobacter hepaticus triggers colitis in specific-pathogen-free interleukin-10(IL-10)-deficient mice through an IL-12-and gamma interferon-dependent mechanism[J]. Infect Immun, 1998, 66 (11): 5157- 5166
[18]   WEST N R , HEGAZY A N , OWENS B M J et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease[J]. Nat Med, 2017, 23 (5): 579- 589
[19]   SHEN Z , FENG Y , RICKMAN B et al. Helicobacter cinaedi induced typhlocolitis in Rag-2-deficient mice[J]. Helicobacter, 2015, 20 (2): 146- 155
doi: 10.1111/hel.2015.20.issue-2
[20]   BOIVIN M A , ROY P K , BRADLEY A et al. Mechanism of interferon-gamma-induced increase in T84 intestinal epithelial tight junction[J]. J Interferon Cytokine Res, 2009, 29 (1): 45- 54
doi: 10.1089/jir.2008.0128
[21]   MA T Y , IWAMOTO G K , HOA N T et al. TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation[J]. Am J Physiol Gastrointest Liver Physiol, 2004, 286 (3): G367- G376
doi: 10.1152/ajpgi.00173.2003
[22]   DIJKSTRA G , ZANDVOORT A J , KOBOLD A C et al. Increased expression of inducible nitric oxide synthase in circulating monocytes from patients with active inflammatory bowel disease[J]. Scand J Gastroenterol, 2002, 37 (5): 546- 554
doi: 10.1080/00365520252903099
[23]   THELESTAM M , FRISAN T . Cytolethal distending toxins[J]. Rev Physiol Biochem Pharmacol, 2004, 152:111- 133
[24]   SHEN Z , FENG Y , ROGERS A B et al. Cytolethal distending toxin promotes Helicobacter cinaedi-associated typhlocolitis in interleukin-10-deficient mice[J]. Infect Immun, 2009, 77 (6): 2508- 2516
doi: 10.1128/IAI.00166-09
[25]   SAGAMI S , UENO Y , TANAKA S et al. Cholinedeficiency causes colonic type Ⅱ natural killer T (NKT) cell loss and alleviates murine colitis under type Ⅰ NKT cell deficiency[J]. PLoS One, 2017, 12 (1): e0169681
doi: 10.1371/journal.pone.0169681
[26]   DE WINTER B Y , VAN DEN WIJNGAARD R M , DE JONGE W J . Intestinal mast cells in gut inflammation and motility disturbances[J]. Biochim Biophys Acta, 2012, 1822 (1): 66- 73
doi: 10.1016/j.bbadis.2011.03.016
[27]   CHICHLOWSKI M , WESTWOOD G S , ABRAHAM S N et al. Role of mast cells in inflammatory bowel disease and inflammation-associated colorectal neoplasia in IL-10-deficient mice[J]. PLoS One, 2010, 5 (8): e12220
doi: 10.1371/journal.pone.0012220
[28]   ZHU H , LI Y R . Oxidative stress and redox signaling mechanisms of inflammatory bowel disease:updated experimental and clinical evidence[J]. Exp Biol Med(Maywood), 2012, 237 (5): 474- 480
doi: 10.1258/ebm.2011.011358
[29]   ZHANG H , XUE Y , WANG H et al. Mast cell deficiency exacerbates inflammatory bowel symptoms in interleukin-10-deficient mice[J]. World J Gastroenterol, 2014, 20 (27): 9106- 9615
[30]   MIZOGUCHI A , TAKEUCHI T , HIMURO H et al. Genetically engineered mouse models for studying inflammatory bowel disease[J]. J Pathol, 2016, 238 (2): 205- 219
doi: 10.1002/path.4640
[1] CAO Liqin,SHI Jimin. Graft failure in allogeneic hematopoietic stem cell trans-plantation[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 651-658.
[2] TANG Hexiao,BAI Yuquan,SHEN Wulin,ZHAO Jinping. Research progress on interleukin-6 in lung cancer[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 659-664.
[3] XIANG Yilang,WU Ziheng,ZHANG Hongkun. Progress on in situ fenestration during thoracic endovascular aortic repair[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 617-622.
[4] LI Gaopeng,HE Jia,WANG Qingqing. Progress on cancer associated fibroblasts in tumor immunoregulation[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 558-563.
[5] WANG Xiaoling,OUYANG Xumei,SUN Xiaoyi. Application of mesenchymal stem cells in antineoplastic drugs delivery for tumor-targeted therapy[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 525-533.
[6] HU Caiqin,ZHU Biao. Progress on pathogenesis of progressive multifocal leukoence-phalopathy[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 534-540.
[7] SHI Ting,YE Xiujin. Roles of CCAAT enhancer binding protein α in acute myeloblastic leukemia[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 552-557.
[8] YE Jianyu,SUN Ziyu,HU Weiwei. Roles of astrocytes in cerebral infarction and related therapeutic strategies[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 493-498.
[9] LU Zhanjun,HU Yangyang,LI Sisi,ZANG Lijuan,JIANG Weiliang,WU Jianjiong,WU Xiening,ZENG Yue,WANG Xingpeng. Anti-inflammatory effect of interleukin-35 in mice with colitis and its mechanism[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 499-506.
[10] HE Jiayi,ZHANG Xinmei. Research progress on oxidative stress in pathogenesis of endometriosis[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 419-425.
[11] XU Zhili,CUI Yiyi,LI Yan,GUO Yong. Research progress on nonspecific immune microenvironment in breast cancer[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 426-434.
[12] WANG Xingxing,WANG Panpan,YANG Xuyan. Research progress on systemic lupus erythematosus overlapping organ-specific autoimmune diseases[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 435-440.
[13] ZHANG Lifeng,ZHANG Xinmei. Research progress on roles of vitamin D in endometriosis[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 413-418.
[14] QIAN Bo,ZHANG Yanling,MO Xuming. Research progress on transcription factors and signal pathways involved in congenital esophageal atresia[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 239-243.
[15] ZHANG Xiaoyan,KANG Lijun. Molecular and cell biological mechanism of olfactory adaptation in Caenorhabditis elegans[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 307-312.