Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (5): 558-563    DOI: 10.3785/j.issn.1008-9292.2018.10.17
    
Progress on cancer associated fibroblasts in tumor immunoregulation
LI Gaopeng(),HE Jia,WANG Qingqing*()
Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
Download: HTML( 27 )   PDF(477KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Cancer associated fibroblasts (CAFs) are important components of the tumor microenvironment. Through secreting of multiple growth factors, cytokines and proteases, CAFs play a significant role in regulating the recruitment and function of various innate immune cells and adaptive immune cells in tumor microenvironment. In addition, extracellular matrix secreted by CAFs can also promote the formation of immunosuppression and hypoxia of tumor microenvironment. Here, we review the progress on CAFs in regulation of immune cells and tumor immunity.



Key wordsNeoplasms/immunology      Fibroblasts/immunology      Review     
Received: 14 April 2018      Published: 23 January 2019
CLC:  R392.12  
Corresponding Authors: WANG Qingqing     E-mail: 21607033@zju.edu.cn;wqq@zju.edu.cn
Cite this article:

LI Gaopeng,HE Jia,WANG Qingqing. Progress on cancer associated fibroblasts in tumor immunoregulation. J Zhejiang Univ (Med Sci), 2018, 47(5): 558-563.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2018.10.17     OR     http://www.zjujournals.com/med/Y2018/V47/I5/558


肿瘤相关成纤维细胞对肿瘤免疫调控作用的研究进展

肿瘤相关成纤维细胞(CAF)是肿瘤微环境中的重要组分,它通过分泌多种生长因子、趋化因子以及蛋白酶,调控肿瘤微环境中固有免疫细胞和适应性免疫细胞的募集和功能的发挥。此外,CAF分泌的胞外基质在塑造肿瘤微环境免疫抑制特性以及低氧形成的过程中也发挥着重要的促进作用。本文综述了肿瘤微环境中CAF对固有免疫细胞和适应性免疫细胞的浸润以及功能发挥的调控机制,同时针对以CAF为靶细胞进行药物开发的相关问题进行了展望,为进一步研究CAF的功能和临床应用提供科学依据。


关键词: 肿瘤/免疫学,  成纤维细胞/免疫学,  综述 
Fig 1 Effect of cancer associated fibroblasts on immune cells in tumor microenvironment
[1]   NEESSE A , MICHL P , FRESE K K et al. Stromal biology and therapy in pancreatic cancer[J]. Gut, 2011, 60 (6): 861- 868
doi: 10.1136/gut.2010.226092
[2]   KOONTONGKAEW S . The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas[J]. J Cancer, 2013, 4 (1): 66- 83
doi: 10.7150/jca.5112
[3]   ISHIMOTO T , MIYAKE K , NANDI T et al. Activation of transforming growth factor beta 1 signaling in gastric cancer-associated fibroblasts increases their motility, via expression of rhomboid 5 homolog 2, and ability to induce invasiveness of gastric cancer cells[J]. Gastroenterology, 2017, 153 (1): 191- 204.e16
doi: 10.1053/j.gastro.2017.03.046
[4]   KALLURI R . The biology and function of fibroblasts in cancer[J]. Nat Rev Cancer, 2016, 16 (9): 582- 598
doi: 10.1038/nrc.2016.73
[5]   MANTOVANI A , MARCHESI F , MALESCI A et al. Tumour-associated macrophages as treatment targets in oncology[J]. Nat Rev Clin Oncol, 2017, 14 (7): 399- 416
doi: 10.1038/nrclinonc.2016.217
[6]   ZHANG A , QIAN Y , YE Z et al. Cancer-associated fibroblasts promote M2 polarization of macrophages in pancreatic ductal adenocarcinoma[J]. Cancer Med, 2017, 6 (2): 463- 470
[7]   MATHEW E , BRANNON A L , DEL VECCHIO A et al. Mesenchymal stem cells promote pancreatic tumor growth by inducing alternative polarization of macrophages[J]. Neoplasia, 2016, 18 (3): 142- 151
doi: 10.1016/j.neo.2016.01.005
[8]   YEH C R , SLAVIN S , DA J et al. Estrogen receptor alpha in cancer associated fibroblasts suppresses prostate cancer invasion via reducing CCL5, IL6 and macrophage infiltration in the tumor microenvironment[J]. Mol Cancer, 2016, 15 (1): 7
[9]   MACE T A , AMEEN Z , COLLINS A et al. Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner[J]. Cancer Res, 2013, 73 (10): 3007- 3018
doi: 10.1158/0008-5472.CAN-12-4601
[10]   ALLAOUI R , BERGENFELZ C , MOHLIN S et al. Cancer-associated fibroblast-secreted CXCL16 attracts monocytes to promote stroma activation in triple-negative breast cancers[J]. Nat Commun, 2016, 7 13050
doi: 10.1038/ncomms13050
[11]   YANG X , LIN Y , SHI Y et al. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling[J]. Cancer Res, 2016, 76 (14): 4124- 4135
doi: 10.1158/0008-5472.CAN-15-2973
[12]   OHSHIO Y , HANAOKA J , KONTANI K et al. Tranilast inhibits the function of cancer-associated fibroblasts responsible for the induction of immune suppressor cell types[J]. Scand J Immunol, 2014, 80 (6): 408- 416
doi: 10.1111/sji.2014.80.issue-6
[13]   KHOSRAVI-MAHARLOOEI M , PAKYARI M , JALILI R B et al. Tolerogenic effect of mouse fibroblasts on dendritic cells[J]. Immunology, 2016, 148 (1): 22- 33
[14]   CHENG J T, DENG Y N, YI H M, et al. Hepatic carcinoma-associated fibroblasts induce IDO-producing regulatory dendritic cells through IL-6-mediated STAT3 activation[J/OL]. Oncogenesis, 2016, 5: e198.
[15]   DE MONTE L , RENI M , TASSI E et al. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer[J]. J Exp Med, 2011, 208 (3): 469- 478
doi: 10.1084/jem.20101876
[16]   LAKINS M A , GHORANI E , MUNIR H et al. Cancer-associated fibroblasts induce antigen-specific deletion of CD8(+) T cells to protect tumour cells[J]. Nat Commun, 2018, 9 (1): 948
[17]   FEIG C , JONES J O , KRAMAN M et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer[J]. Proc Natl Acad Sci U S A, 2013, 110 (50): 20212- 20217
doi: 10.1073/pnas.1320318110
[18]   HOWRYLAK J A , NAKAHIRA K . Inflammasomes:key mediators of lung immunity[J]. Annu Rev Physiol, 2017, 79 471- 494
doi: 10.1146/annurev-physiol-021115-105229
[19]   SHAFER-WEAVER K A , ANDERSON M J , STAGLIANO K et al. Cutting edge:tumor-specific CD8+ T cells infiltrating prostatic tumors are induced to become suppressor cells[J]. J Immunol, 2009, 183 (8): 4848- 4852
doi: 10.4049/jimmunol.0900848
[20]   SHEN C C , KANG Y H , ZHAO M et al. WNT16B from ovarian fibroblasts induces differentiation of regulatory T cells through beta-catenin signal in dendritic cells[J]. Int J Mol Sci, 2014, 15 (7): 12928- 12939
doi: 10.3390/ijms150712928
[21]   OZDEMIR B C , PENTCHEVA-HOANG T , CARSTENS J L et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival[J]. Cancer Cell, 2014, 25 (6): 719- 734
doi: 10.1016/j.ccr.2014.04.005
[22]   SEWELL-LOFTIN M K , BAYER S V H , CRIST E et al. Cancer-associated fibroblasts support vascular growth through mechanical force[J]. Sci Rep, 2017, 7 (1): 12574
doi: 10.1038/s41598-017-13006-x
[23]   ORIMO A , GUPTA P B , SGROI D C et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion[J]. Cell, 2005, 121 (3): 335- 348
[24]   YANG J , LU Y , LIN Y Y et al. Vascular mimicry formation is promoted by paracrine TGF-beta and SDF1 of cancer-associated fibroblasts and inhibited by miR-101 in hepatocellular carcinoma[J]. Cancer Lett, 2016, 383 (1): 18- 27
doi: 10.1016/j.canlet.2016.09.012
[25]   DE PALMA M , BIZIATO D , PETROVA T V . Microenvironmental regulation of tumour angiogenesis[J]. Nat Rev Cancer, 2017, 17 (8): 457- 474
doi: 10.1038/nrc.2017.51
[26]   LIN N N , WANG P , ZHAO D et al. Significance of oral cancer-associated fibroblasts in angiogenesis, lymphangiogenesis, and tumor invasion in oral squamous cell carcinoma[J]. J Oral Pathol Med, 2017, 46 (1): 21- 30
doi: 10.1111/jop.2017.46.issue-1
[27]   MCWHORTER F Y , DAVIS C T , LIU W F . Physical and mechanical regulation of macrophage phenotype and function[J]. Cell Mol Life Sci, 2015, 72 (7): 1303- 1316
doi: 10.1007/s00018-014-1796-8
[28]   BARKER H E , COX T R , ERLER J T . The rationale for targeting the LOX family in cancer[J]. Nat Rev Cancer, 2012, 12 (8): 540- 552
doi: 10.1038/nrc3319
[29]   KOBAYASHI N , MIYOSHI S , MIKAMI T et al. Hyaluronan deficiency in tumor stroma impairs macrophage trafficking and tumor neovascularization[J]. Cancer Res, 2010, 70 (18): 7073- 7083
doi: 10.1158/0008-5472.CAN-09-4687
[30]   NIELSEN S R , QUARANTA V , LINFORD A et al. Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis[J]. Nat Cell Biol, 2016, 18 (5): 549- 560
doi: 10.1038/ncb3340
[31]   MEYAARD L . The inhibitory collagen receptor LAIR-1(CD305)[J]. J Leukoc Biol, 2008, 83 (4): 799- 803
doi: 10.1189/jlb.0907609
[32]   SPRINGER N L , FISCHBACH C . Biomaterials approaches to modeling macrophage-extracellular matrix interactions in the tumor microenvironment[J]. Curr Opin Biotechnol, 2016, 40 16- 23
doi: 10.1016/j.copbio.2016.02.003
[33]   PICKUP M W , MOUW J K , WEAVER V M . The extracellular matrix modulates the hallmarks of cancer[J]. EMBO Rep, 2014, 15 (12): 1243- 1253
doi: 10.15252/embr.201439246
[34]   PRIES A R, CORNELISSEN A J, SLOOT A A, et al. Structural adaptation and heterogeneity of normal and tumor microvascular networks[J/OL]. PLoS Comput Biol, 2009, 5(5): e1000394.
[35]   BENTOVIM L , AMARILIO R , ZELZER E . HIF1 alpha is a central regulator of collagen hydroxylation and secretion under hypoxia during bone development[J]. Development, 2012, 139 (23): 4473- 4483
doi: 10.1242/dev.083881
[36]   JEONG S K , KIM J S , LEE C G et al. Tumor associated macrophages provide the survival resistance of tumor cells to hypoxic microenvironmental condition through IL-6 receptor-mediated signals[J]. Immunobiology, 2017, 222 (1): 55- 65
doi: 10.1016/j.imbio.2015.11.010
[37]   CHIU D K , XU I M , LAI R K et al. Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26[J]. Hepatology, 2016, 64 (3): 797- 813
doi: 10.1002/hep.v64.3
[38]   ROBERTS E W , DEONARINE A , JONES J O et al. Depletion of stromal cells expressing fibroblast activation protein-alpha from skeletal muscle and bone marrow results in cachexia and anemia[J]. J Exp Med, 2013, 210 (6): 1137- 1151
doi: 10.1084/jem.20122344
[39]   BROKOPP C E , SCHOENAUER R , RICHARDS P et al. Fibroblast activation protein is induced by inflammation and degrades type Ⅰ collagen in thin-cap fibroatheromata[J]. Eur Heart J, 2011, 32 (21): 2713- 2722
doi: 10.1093/eurheartj/ehq519
[1] ZHAO Huihui, TANG Huifang. Research progress on composite animal models of inflammatory bowel disease based on gene knockout[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 665-670.
[2] CAO Liqin, SHI Jimin. Graft failure in allogeneic hematopoietic stem cell trans-plantation[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 651-658.
[3] TANG Hexiao, BAI Yuquan, SHEN Wulin, ZHAO Jinping. Research progress on interleukin-6 in lung cancer[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 659-664.
[4] XIANG Yilang, WU Ziheng, ZHANG Hongkun. Progress on in situ fenestration during thoracic endovascular aortic repair[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 617-622.
[5] YE Jianyu,SUN Ziyu,HU Weiwei. Roles of astrocytes in cerebral infarction and related therapeutic strategies[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 493-498.
[6] WANG Xiaoling,OUYANG Xumei,SUN Xiaoyi. Application of mesenchymal stem cells in antineoplastic drugs delivery for tumor-targeted therapy[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 525-533.
[7] HU Caiqin,ZHU Biao. Progress on pathogenesis of progressive multifocal leukoence-phalopathy[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 534-540.
[8] SHI Ting,YE Xiujin. Roles of CCAAT enhancer binding protein α in acute myeloblastic leukemia[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 552-557.
[9] HE Jiayi,ZHANG Xinmei. Research progress on oxidative stress in pathogenesis of endometriosis[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 419-425.
[10] XU Zhili,CUI Yiyi,LI Yan,GUO Yong. Research progress on nonspecific immune microenvironment in breast cancer[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 426-434.
[11] WANG Xingxing,WANG Panpan,YANG Xuyan. Research progress on systemic lupus erythematosus overlapping organ-specific autoimmune diseases[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 435-440.
[12] ZHANG Lifeng,ZHANG Xinmei. Research progress on roles of vitamin D in endometriosis[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 413-418.
[13] QIAN Bo,ZHANG Yanling,MO Xuming. Research progress on transcription factors and signal pathways involved in congenital esophageal atresia[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 239-243.
[14] ZHANG Xiaoyan,KANG Lijun. Molecular and cell biological mechanism of olfactory adaptation in Caenorhabditis elegans[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 307-312.
[15] TIAN Guangfeng,GAO Hui,HU Shasha,SHU Qiang. Research progress on genetic and epigenetic mechanisms in congenital heart disease[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 227-238.