Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (5): 525-533    DOI: 10.3785/j.issn.1008-9292.2018.10.13
    
Application of mesenchymal stem cells in antineoplastic drugs delivery for tumor-targeted therapy
WANG Xiaoling1,2(),OUYANG Xumei1,2,SUN Xiaoyi1,*()
1. Department of Pharmacy, Zhejiang University City College, Hangzhou 310015, China
2. College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
Download: HTML( 15 )   PDF(914KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In recent years, a large number of studies have achieved tumor targeting by mesenchymal stem cells (MSC)-based delivery system attributed to the tumor tropism of MSCs. Biomacromolecules and antineoplastic drugs loaded on MSC via internalization or cell membrane anchoring can be released or expressed at tumor site to perform their antitumor effects. The genetically modified MSC are extensively studied, however, the applications of MSCs in targeted delivery of antineoplastic drug with small molecules are not well summarized. In this review, MSCs homing mechanism and the distribution of injected MSCs in vivo is introduced; the examples of antitumor drug-primed MSCs and drug loaded MSCs are presented; the drug loading and releasing process from MSCs is also illustrated; finally, challenges and future perspectives of MSCs-based drug delivery system on realizing its full potential are prospected.



Key wordsNeoplasms      Mesenchymal stem cells/cytology      Nanospheres      Antineoplastic agents      Drug delivery systems      Review     
Received: 11 May 2018      Published: 23 January 2019
CLC:  R979.1  
Corresponding Authors: SUN Xiaoyi     E-mail: lingxiaowangjy@163.com;sunxiaoyi@zucc.edu.cn
Cite this article:

WANG Xiaoling,OUYANG Xumei,SUN Xiaoyi. Application of mesenchymal stem cells in antineoplastic drugs delivery for tumor-targeted therapy. J Zhejiang Univ (Med Sci), 2018, 47(5): 525-533.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2018.10.13     OR     http://www.zjujournals.com/med/Y2018/V47/I5/525


基于间充质干细胞的小分子化学药物肿瘤靶向递送系统研究进展

近年来,大量研究通过细胞内化或细胞膜结合的方式将生物大分子或小分子化学药物负载于间充质干细胞(MSC)上,利用其天然的肿瘤归巢特性实现药物的靶向递送,继而通过在靶部位药物的释放或基因表达,达到肿瘤治疗的目的。基因修饰MSC的研究较为成熟,而递送小分子化学药物的研究起步较晚。本文从MSC肿瘤迁移机制、细胞注射后体内分布特点入手,总结了MSC在小分子化学药物肿瘤靶向递送中的研究;同时介绍了MSC与原型药物、载药纳米粒构建的复合系统的载药、释药过程,展望了该系统遇到的挑战和应用前景。


关键词: 肿瘤,  间质干细胞/细胞学,  纳米球,  抗肿瘤药,  药物释放系统,  综述 
药物 MSC来源 肿瘤模型 MSC给药途径 递送效果 文献
  “—”:无相关资料; hTERT:人端粒酶逆转录酶.
紫杉醇 人骨髓 人前列腺癌(DU145)NOD/SCID小鼠皮下移植瘤、人胶质瘤(U87MG)裸鼠皮下移植瘤 MSC与肿瘤细胞混合接种 DU145瘤重为对照组的1/3;U87MG瘤重为对照组的60% [16]
人胸膜间皮瘤(NCI-H28)细胞系 每个MSC释放0.15 pg紫杉醇 [18]
人骨髓瘤(RPMI 8226)三维动态培养模型 引起肿瘤细胞凋亡和坏死 [19]
人急性T淋巴细胞白血病MOLT-4裸鼠皮下移植瘤 MSC与肿瘤细胞混合接种/MSC瘤内注射 混合接种2个月后未观察到肿瘤结节;瘤内注射后肿瘤体积是对照组的1/4 [20]
人羊膜 人胰腺癌(CFPAC-1)细胞系 MSC在48 h内释放59%胞内药物,每个MSC约释放紫杉醇0.51 pg [17]
人牙龈 人胰腺癌(CFPAC-1)细胞系 MSC释放紫杉醇,释放液具细胞毒性 [21]
人口腔鳞状细胞癌(SCC154)细胞系 MSC在24 h内释放63%胞内药物,106个MSC约释放150 ng紫杉醇 [22]
hTERT/SV40永生化人脂肪 人胰腺癌(CFPAC-1)细胞系 MSC通过微泡结构释放紫杉醇 [23]
BDF/1小鼠骨髓 人胰腺癌(CFPAC-1)细胞系 紫杉醇通过外泌体结构被MSC排出,每个MSC释放0.1 pg紫杉醇 [24]
鼠黑色素瘤(B16)C57BL16小鼠皮下移植瘤 MSC与肿瘤细胞混合接种 瘤重约为对照组的1/4 [16]
鼠黑色素瘤(B16)C57BL16小鼠肺转移模型 尾静脉注射 注射3次后转移瘤被治愈,MSC优先分布于结节周围血管 [25]
鼠淋巴细胞白血病(L1210) BDF/1小鼠原位瘤 腹腔注射 生存时间延长1倍 [20]
人胶质瘤(U87MG)免疫抑制Wistar大鼠原位移植瘤 颅内注射,MSC与肿瘤细胞同时接种于同侧半球,注射部位间距2~3 mm 具肿瘤归巢能力,胶质瘤细胞核发生紫杉醇诱发的典型变化,星形胶质细胞和周围神经元形态无显著变化 [26]
犬骨髓/犬脂肪 犬胶质瘤(J3T)细胞系、人胶质瘤(T98G/U87MG)细胞系 每个MSC释放0.09 pg紫杉醇,有效抑制肿瘤细胞增殖 [27]
阿霉素 人牙龈 人口腔鳞状细胞癌(SCC154)细胞系 MSC可在24 h内释放100%胞内药物,106个MSC可释放669 ng阿霉素 [22]
人骨髓 人乳腺癌(MDA-MB-231/Rluc)裸鼠皮下移植瘤、人甲状腺癌(CAL62/Rluc)裸鼠皮下移植瘤 尾静脉注射 与5 μmol/L阿霉素孵育得到的载药MSC可迁移至肿瘤组织,肿瘤内药物浓度高于对照组 [28]
吉西他滨 人骨髓/人胰腺 人胰腺癌(CFPAC-1)细胞系 与2 μg/mL吉西他滨孵育后的载药MSC可抑制肿瘤细胞增殖 [29]
人牙龈 人口腔鳞状细胞癌(SCC154)细胞系 MSC在24 h内释放92%胞内药物,106个MSC释放75 ng吉西他滨 [22]
顺铂、铂(Ⅱ)配合物 人脂肪 人胶质瘤(U87MG)细胞系、人胸膜间皮瘤(NCI-H28)细胞系 MSC分别释放胞内36%的铂(Ⅱ)配合物和95%顺铂 [30]
索拉非尼 人骨髓 人胶质瘤(U87MG)裸鼠原位移植瘤 鼻腔给药 48 h释放60%药物, MSC广泛分布于肿瘤组织内,切片中细胞密度达403个/mm2,但无明显抑制肿瘤生长作用 [31]
Tab 1 Studies of drug-primed mesenchymal stem cells (MSC) for tumor-targeting therapy
载体类型 载体 载体修饰 药物 MSC来源 肿瘤模型 MSC给药途径 递送效果 文献
  “—”:无相关资料.PLGA:聚乳酸-羟基乙酸; PLA:聚乳酸;PAMAM:聚酰胺-胺型树枝状聚合物; PMMA:聚甲基丙烯酸甲酯;TPPS:四苯基卟啉磺酸盐.
高分子纳米粒 PLGA纳米粒 壳聚糖吸附 紫杉醇 大鼠骨髓 人结肠癌(HT-29)细胞系、人卵巢癌(Skov-3)细胞系、鼠肺癌(Lewis)细胞系 Transwell系统中,向肿瘤细胞迁移效率HT-29> Skov-3>Lewis [33]
鼠胶质瘤(C6)大鼠原位移植瘤 颅内注射,对侧半球 生存期为MSC直接包载紫杉醇组及紫杉醇纳米粒组的1.5倍 [35]
人骨髓 人肺癌(A549)裸鼠原位移植瘤 尾静脉注射 较纳米组显著增加肺内分布,2 d后仍可测得荧光探针信号;AUC为溶液组或纳米粒组9倍,生存期为纳米粒组1.4倍 [34, 42]
鼠Lewis肺腺癌C57BL/6小鼠原位移植瘤 尾静脉注射 纳米粒组或溶液组剂量的1/48可获得相同的抗肿瘤效果 [42]
阿霉素 C57BL6小鼠脂肪 鼠黑色素瘤(B16F10) C57BL/6小鼠肺转移模型 尾静脉注射 肺重量和肺内节结数显著显著低于MSC直接包载阿霉素组 [43]
多烯紫杉醇 人胎盘 KrasLSL-G12D肺癌小鼠 尾静脉注射 纳米粒组剂量的1/8可获得相同的抗肿瘤效果 [4]
PLA纳米粒 6-香豆素 人骨髓 人胶质瘤(U87MG)裸鼠原位移植瘤 瘤内注射 注射7 d后,MSC和药物分布在肿瘤周围 [41]
PAMAM RGD偶联 阿霉素 大鼠骨髓 鼠胶质瘤(C6)ICR小鼠原位移植瘤 瘤内注射 较RGD偶联纳米粒生存期延长了46.8% [44]
PMMA纳米粒 TPPS 人骨髓 人骨肉瘤(U2OS)细胞系 混合共培养,光触发产生活性氧杀灭肿瘤细胞 [45]
白蛋白纳米粒 铁离子螯合 阿霉素 人脐带 人乳腺癌(MCF-7)裸鼠皮下移植瘤 尾静脉注射 主要分布于肿瘤,瘤重及肿瘤体积显著低于溶液组或纳米粒组 [46]
无机纳米粒 介孔硅 阿霉素 人胎盘 N-甲基亚硝基脲诱发的大鼠乳腺癌模型 尾静脉注射 注射后3 d可在肿瘤组织内发现纳米粒 [47]
有序介孔有机硅纳米球 紫杉醇 Balb/C小鼠 人乳腺癌(MCF-7)裸鼠皮下移植瘤 瘤内注射 有效抑制肿瘤生长,但与纳米粒对照组差异无统计学意义 [48]
金纳米粒 柠康酰胺酸碱度敏感基团 人来源 人纤维瘤(HT-1080)裸鼠皮下移植瘤 尾静脉注射 肿瘤靶向效率比普通金纳米粒高37倍、瘤区温度高8.3 ℃,肿瘤几乎不可见 [49]
四氧化三铁/三氧化二铁磁性纳米粒 棕榈酸/棕榈酸钠 米托蒽醌 人脂肪 人骨肉瘤三维组织样结构 每细胞含1.22 pg米托蒽醌和9 pg磁性材料 [50]
脂质颗粒 类脂纳米囊 莫昔芬的二茂铁衍生物 人骨髓 人胶质瘤(U87MG)裸鼠皮下移植瘤 瘤内注射 可抑制肿瘤生长,但效果较弱 [51]
膜融合长循环超声纳米泡 喜树碱 C57BL/ 6JNarl小鼠脂肪 鼠黑色素瘤(B16F0) C57BL/6JNarl小鼠皮下移植瘤 瘤内注射 纳米泡可在肿瘤区域被示踪,可杀伤肿瘤细胞 [52]
Tab 2 Studies of nanoparticle-loaded mesenchymal stem cells (MSC) for tumor-targeting therapy
[1]   CHULPANOVA D S , KITAEVA K V , TAZETDINOVA L G et al. Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment[J]. Front Pharmacol, 2018, 9:259
doi: 10.3389/fphar.2018.00259
[2]   FURLANI D , UGURLUCAN M , ONG L et al. Is the intravascular administration of mesenchymal stem cells safe? Mesenchymal stem cells and intravital microscopy[J]. Microvasc Res, 2009, 77 (3): 370- 376
doi: 10.1016/j.mvr.2009.02.001
[3]   LEE R H , PULIN A A , SEO M J et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6[J]. Cell Stem Cell, 2009, 5 (1): 54- 63
doi: 10.1016/j.stem.2009.05.003
[4]   WANG X , CHEN H , ZENG X et al. Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system[J]. Acta Pharm Sin B, 2018, in press
[5]   NYSTEDT J , ANDERSON H , TIKKANEN J et al. Cell surface structures influence lung clearance rate of systemically infused mesenchymal stromal cells[J]. Stem Cells, 2013, 31 (2): 317- 326
doi: 10.1002/stem.v31.2
[6]   GHOLAMREZANEZHAD A , MIRPOUR S , BAGHERI M et al. In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis[J]. Nucl Med Biol, 2011, 38 (7): 961- 967
doi: 10.1016/j.nucmedbio.2011.03.008
[7]   KIM S M , JEONG C H , WOO J S et al. In vivo near-infrared imaging for the tracking of systemically delivered mesenchymal stem cells:tropism for brain tumors and biodistribution[J]. Int J Nanomedicine, 2016, 11:13- 23
[8]   DE WITTE S F H , LUK F , SIERRA P J M et al. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells[J]. Stem Cells, 2018, 36 (4): 602- 615
doi: 10.1002/stem.v36.4
[9]   GALLEU A , RIFFO-VASQUEZ Y , TRENTO C et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation[J]. Sci Transl Med, 2017, 9 (416): eaam7828
doi: 10.1126/scitranslmed.aam7828
[10]   TEG K , DLJ T , DENMEADE S R et al. Concise review:mesenchymal stem cell-based drug delivery:the good, the bad, the ugly, and the promise[J]. Stem Cells Transl Med, 2018, 7 (9): 651- 663
doi: 10.1002/sctm.18-0024
[11]   TOMA C , WAGNER W R , BOWRY S et al. Fate of culture-expanded mesenchymal stem cells in the microvasculature:in vivo observations of cell kinetics[J]. Circ Res, 2009, 104 (3): 398- 402
doi: 10.1161/CIRCRESAHA.108.187724
[12]   FISCHER U M , HARTING M T , JIMENEZ F et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery:the pulmonary first-pass effect[J]. Stem Cells Dev, 2009, 18 (5): 683- 692
doi: 10.1089/scd.2008.0253
[13]   ZANETTI A , GRATA M , ETLING E B et al. Suspension-expansion of bone marrow results in small mesenchymal stem cells exhibiting increased transpulmonary passage following intravenous administration[J]. Tissue Eng Part C Methods, 2015, 21 (7): 683- 692
doi: 10.1089/ten.tec.2014.0344
[14]   GILAZIEVA Z , TAZETDINOVA L , ARKHIPOVA S et al. Effect of cisplatin on ultrastructure and viability of adipose-derived mesenchymal stem cells[J]. Bio Nano Science, 2016, 6 (4): 534- 539
[15]   NICOLAY N H , LOPEZ P R , RVHLE A et al. Mesenchymal stem cells maintain their defining stem cell characteristics after treatment with cisplatin[J]. Sci Rep, 2016, 6:20035
doi: 10.1038/srep20035
[16]   PESSINA A, BONOMI A, COCCè V, et al. Mesenchymal stromal cells primed with paclitaxel provide a new approach for cancer therapy[J/OL]. PLoS One, 2011, 6(12): e28321.
[17]   BONOMI A , SILINI A , VERTUA E et al. Human amniotic mesenchymal stromal cells (hAMSCs) as potential vehicles for drug delivery in cancer therapy:an in vitro study[J]. Stem Cell Res Ther, 2015, 6 (1): 155
[18]   PETRELLA F , COCCè V , MASIA C et al. Paclitaxel-releasing mesenchymal stromal cells inhibit in vitro proliferation of human mesothelioma cells[J]. Biomed Pharmacother, 2017, 87:755- 758
doi: 10.1016/j.biopha.2017.01.118
[19]   BONOMI A , STEIMBERG N , BENETTI A et al. Paclitaxel-releasing mesenchymal stromal cells inhibit the growth of multiple myeloma cells in a dynamic 3D culture system[J]. Hematol Oncol, 2017, 35 (4): 693- 702
doi: 10.1002/hon.v35.4
[20]   PESSINA A , COCCè V , PASCUCCI L et al. Mesenchymal stromal cells primed with Paclitaxel attract and kill leukaemia cells, inhibit angiogenesis and improve survival of leukaemia-bearing mice[J]. Br J Haematol, 2013, 160 (6): 766- 778
doi: 10.1111/bjh.12196
[21]   BRINI A T , COCCè V , FERREIRA L M et al. Cell-mediated drug delivery by gingival interdental papilla mesenchymal stromal cells (GinPa-MSCs) loaded with paclitaxel[J]. Expert Opin Drug Deliv, 2016, 13 (6): 789- 798
[22]   COCCè V , FARRONATO D , BRINI A T et al. Drug loaded gingival mesenchymal stromal cells (GinPa-MSCs) inhibit in vitro proliferation of oral squamous cell carcinoma[J]. Sci Rep, 2017, 7 (1): 9376
doi: 10.1038/s41598-017-09175-4
[23]   COCCE V , BALDUCCI L , FALCHETTI M L et al. Fluorescent immortalized human adipose derived stromal cells (hASCs-TS/GFP+) for studying cell drug delivery mediated by microvesicles[J]. Anticancer Agents Med Chem, 2017, 17 (11): 1578- 1585
[24]   PASCUCCI L , COCCè V , BONOMI A et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth:a new approach for drug delivery[J]. J Control Release, 2014, 192:262- 270
doi: 10.1016/j.jconrel.2014.07.042
[25]   PESSINA A , LEONETTI C , ARTUSO S et al. Drug-releasing mesenchymal cells strongly suppress B16 lung metastasis in a syngeneic murine model[J]. J Exp Clin Cancer Res, 2015, 34:82
doi: 10.1186/s13046-015-0200-3
[26]   PACIONI S , D'ALESSANDRIS Q G , GIANNETTI S et al. Mesenchymal stromal cells loaded with paclitaxel induce cytotoxic damage in glioblastoma brain xenografts[J]. Stem Cell Res Ther, 2015, 6:194
doi: 10.1186/s13287-015-0185-z
[27]   BONOMI A , GHEZZI E , PASCUCCI L et al. Effect of canine mesenchymal stromal cells loaded with paclitaxel on growth of canine glioma and human glioblastoma cell lines[J]. Vet J, 2017, 223:41- 47
doi: 10.1016/j.tvjl.2017.05.005
[28]   KALIMUTHU S , ZHU L , OH J M et al. Migration of mesenchymal stem cells to tumor xenograft models and in vitro drug delivery by doxorubicin[J]. Int J Med Sci, 2018, 15 (10): 1051- 1061
doi: 10.7150/ijms.25760
[29]   BONOMI A , SORDI V , DUGNANI E et al. Gemcitabine-releasing mesenchymal stromal cells inhibit in vitro proliferation of human pancreatic carcinoma cells[J]. Cytotherapy, 2015, 17 (12): 1687- 1695
doi: 10.1016/j.jcyt.2015.09.005
[30]   RIMOLDI I , COCCè V , FACCHETTI G et al. Uptake-release by MSCs of a cationic platinum(Ⅱ) complex active in vitro on human malignant cancer cell lines[J]. Biomed Pharmacother, 2018, 108:111- 118
doi: 10.1016/j.biopha.2018.09.040
[31]   CLAVREUL A , POURBAGHI-MASOULEH M , ROGER E et al. Human mesenchymal stromal cells as cellular drug-delivery vectors for glioblastoma therapy:a good deal?[J]. J Exp Clin Cancer Res, 2017, 36 (1): 135
doi: 10.1186/s13046-017-0605-2
[32]   YAO S , LI X , LIU J et al. Maximized nanodrug-loaded mesenchymal stem cells by a dual drug-loaded mode for the systemic treatment of metastatic lung cancer[J]. Drug Deliv, 2017, 24 (1): 1372- 1383
doi: 10.1080/10717544.2017.1375580
[33]   DAI T , YANG E , SUN Y et al. Preparation and drug release mechanism of CTS-TAX-NP-MSCs drug delivery system[J]. Int J Pharm, 2013, 456 (1): 186- 194
doi: 10.1016/j.ijpharm.2013.07.070
[34]   SADHUKHA T , O'BRIEN T D , PRABHA S . Nano-engineered mesenchymal stem cells as targeted therapeutic carriers[J]. J Control Release, 2014, 196:243- 251
doi: 10.1016/j.jconrel.2014.10.015
[35]   WANG X , GAO J , OUYANG X et al. Mesenchymal stem cells loaded with paclitaxel-poly(lactic-co-glycolic acid) nanoparticles for glioma-targeting therapy[J]. Int J Nanomedicine, 2018, 13:5231- 5248
doi: 10.2147/IJN
[36]   YANES R E , TARN D , HWANG A A et al. Involvement of lysosomal exocytosis in the excretion of mesoporous silica nanoparticles and enhancement of the drug delivery effect by exocytosis inhibition[J]. Small, 2013, 9 (5): 697- 704
doi: 10.1002/smll.v9.5
[37]   OH N , PARK J H . Endocytosis and exocytosis of nanoparticles in mammalian cells[J]. Int J Nanomedicine, 2014, 9 (Suppl 1): 51- 63
[38]   SAKHTIANCHI R , MINCHIN R F , LEE K B et al. Exocytosis of nanoparticles from cells:role in cellular retention and toxicity[J]. Adv Colloid Interface Sci, 2013, 201-202:18- 29
doi: 10.1016/j.cis.2013.10.013
[39]   EL-DAKDOUKI M H , PURé E , HUANG X . Development of drug loaded nanoparticles for tumor targeting. Part 2:Enhancement of tumor penetration through receptor mediated transcytosis in 3D tumor models[J]. Nanoscale, 2013, 5 (9): 3904- 3911
doi: 10.1039/c3nr90022c
[40]   LIU S L , ZHANG Z L , SUN E Z et al. Visualizing the endocytic and exocytic processes of wheat germ agglutinin by quantum dot-based single-particle tracking[J]. Biomaterials, 2011, 32 (30): 7616- 7624
doi: 10.1016/j.biomaterials.2011.06.046
[41]   ROGER M , CLAVREUL A , VENIER-JULIENNE M C et al. Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors[J]. Biomaterials, 2010, 31 (32): 8393- 8401
doi: 10.1016/j.biomaterials.2010.07.048
[42]   LAYEK B , SADHUKHA T , PANYAM J et al. Nano-engineered mesenchymal stem cells increase therapeutic efficacy of anticancer drug through true active tumor targeting[J]. Mol Cancer Ther, 2018, 17 (6): 1196- 1206
doi: 10.1158/1535-7163.MCT-17-0682
[43]   ZHAO Y , TANG S , GUO J et al. Targeted delivery of doxorubicin by nano-loaded mesenchymal stem cells for lung melanoma metastases therapy[J]. Sci Rep, 2017, 7:44758
doi: 10.1038/srep44758
[44]   ZHANG X , YAO S , LIU C et al. Tumor tropic delivery of doxorubicin-polymer conjugates using mesenchymal stem cells for glioma therapy[J]. Biomaterials, 2015, 39:269- 281
doi: 10.1016/j.biomaterials.2014.11.003
[45]   DUCHI S , SOTGIU G , LUCARELLI E et al. Mesenchymal stem cells as delivery vehicle of porphyrin loaded nanoparticles:effective photoinduced in vitro killing of osteosarcoma[J]. J Control Release, 2013, 168 (2): 225- 237
doi: 10.1016/j.jconrel.2013.03.012
[46]   CAO S , GUO J , HE Y et al. Nano-loaded human umbilical cord mesenchymal stem cells as targeted carriers of doxorubicin for breast cancer therapy[J]. Artif Cells Nanomed Biotechnol, 2018, 1- 11
[47]   PARIS J L , DE LA TORRE P , MANZANO M et al. Decidua-derived mesenchymal stem cells as carriers of mesoporous silica nanoparticles. In vitro and in vivo evaluation on mammary tumors[J]. Acta Biomater, 2016, 33:275- 282
doi: 10.1016/j.actbio.2016.01.017
[48]   WU J , LIU Y , TANG Y et al. Synergistic chemo-photothermal therapy of breast cancer by mesenchymal stem cell-encapsulated yolk-shell GNR@HPMO-PTX nanospheres[J]. ACS Appl Mater Interfaces, 2016, 8 (28): 17927- 17935
doi: 10.1021/acsami.6b05677
[49]   KANG S , BHANG S H , HWANG S et al. Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy[J]. ACS Nano, 2015, 9 (10): 9678- 9690
doi: 10.1021/acsnano.5b02207
[50]   HEREA D D , LABUSCA L , RADU E et al. Human adipose-derived stem cells loaded with drug-coated magnetic nanoparticles for in-vitro tumor cells targeting[J]. Mater Sci Eng C Mater Biol Appl, 2019, 94:666- 676
doi: 10.1016/j.msec.2018.10.019
[51]   ROGER M , CLAVREUL A , HUYNH N T et al. Ferrociphenol lipid nanocapsule delivery by mesenchymal stromal cells in brain tumor therapy[J]. Int J Pharm, 2012, 423 (1): 63- 68
[52]   HO Y J , CHIANG Y J , KANG S T et al. Camptothecin-loaded fusogenic nanodroplets as ultrasound theranostic agent in stem cell-mediated drug-delivery system[J]. J Control Release, 2018, 278:100- 109
doi: 10.1016/j.jconrel.2018.04.001
[53]   WANG Q , CHENG H , PENG H et al. Non-genetic engineering of cells for drug delivery and cell-based therapy[J]. Adv Drug Deliv Rev, 2015, 91:125- 140
doi: 10.1016/j.addr.2014.12.003
[54]   CHENG H , KASTRUP C J , RAMANATHAN R et al. Nanoparticulate cellular patches for cell-mediated tumoritropic delivery[J]. ACS nano, 2010, 4 (2): 625- 631
doi: 10.1021/nn901319y
[55]   LI L , GUAN Y , LIU H et al. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy[J]. ACS Nano, 2011, 5 (9): 7462- 7470
doi: 10.1021/nn202399w
[56]   SURYAPRAKASH S , LI M , LAO Y H et al. Graphene oxide cellular patches for mesenchymal stem cell-based cancer therapy[J]. Carbon, 2018, 129:863- 868
doi: 10.1016/j.carbon.2017.12.031
[57]   KLOPP A H , GUPTA A , SPAETH E et al. Concise review:dissecting a discrepancy in the literature:do mesenchymal stem cells support or suppress tumor growth?[J]. Stem Cells, 2011, 29 (1): 11- 19
doi: 10.1002/stem.559
[58]   SHI Y , DU L , LIN L et al. Tumour-associated mesenchymal stem/stromal cells:emerging therapeutic targets[J]. Nat Rev Drug Discov, 2017, 16 (1): 35- 52
[59]   ZHANG T Y , HUANG B , WU H B et al. Synergistic effects of co-administration of suicide gene expressing mesenchymal stem cells and prodrug-encapsulated liposome on aggressive lung melanoma metastases in mice[J]. J Control Release, 2015, 209:260- 271
doi: 10.1016/j.jconrel.2015.05.007
[60]   PACIONI S , D'ALESSANDRIS Q G , GIANNETTI S et al. Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts[J]. Stem Cell Res Ther, 2017, 8 (1): 53
[1] ZHAO Huihui, TANG Huifang. Research progress on composite animal models of inflammatory bowel disease based on gene knockout[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 665-670.
[2] CAO Liqin, SHI Jimin. Graft failure in allogeneic hematopoietic stem cell trans-plantation[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 651-658.
[3] TANG Hexiao, BAI Yuquan, SHEN Wulin, ZHAO Jinping. Research progress on interleukin-6 in lung cancer[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 659-664.
[4] XIANG Yilang, WU Ziheng, ZHANG Hongkun. Progress on in situ fenestration during thoracic endovascular aortic repair[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 617-622.
[5] SHEN Hong, JI Feng. Efficacy and safety of digestive tract stent placement under direct visual endoscopy without X-ray monitoring in treatment of digestive tract stricture[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 643-650.
[6] LI Gaopeng,HE Jia,WANG Qingqing. Progress on cancer associated fibroblasts in tumor immunoregulation[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 558-563.
[7] YE Jianyu,SUN Ziyu,HU Weiwei. Roles of astrocytes in cerebral infarction and related therapeutic strategies[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 493-498.
[8] HU Caiqin,ZHU Biao. Progress on pathogenesis of progressive multifocal leukoence-phalopathy[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 534-540.
[9] SHI Ting,YE Xiujin. Roles of CCAAT enhancer binding protein α in acute myeloblastic leukemia[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 552-557.
[10] DI Chenhong,JIN Fan. Value of combined detection of claudin 4 and high-risk human papilloma virus in high-grade squamous intraepithelial lesion and cervix squamous cell carcinoma[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 344-350.
[11] CHEN Zhiqiang,MI Xianjun,CHEN Ang,DUAN Lifeng,DAI Xinzhen,DENG Wentong. Paraffin section thickness in immunohistochemical detection of p16 expression in cervical tissue samples[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 362-366.
[12] HU Zheng,MA Ding. Precision screening and treatment of human papilloma virus related cervical cancer[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 338-343.
[13] LOU Yelin,ZHOU Yimin,LU Hong,LYU Weiguo. Establishment of a prognostic model for preterm delivery in women after cervical conization[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 351-356.
[14] CHEN Qian,LIU Lu,ZHANG Jingjing,HAN Sai,CUI Baoxia,ZHANG Youzhong,KONG Beihua. Clinical features and prognosis of cervical adenocarcinoma and adenosquamous carcinoma: an analysis of 237 cases[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 357-361.
[15] LI Chen,ZHU Yao,YANG Jinhua,XU Dongsheng,WANG Jianbing,CHEN Kun,LI Qilong. Incidence of lung cancer in Jiashan, Zhejiang province: trend analysis from 1987 to 2016 and projection from 2017 to 2019[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 367-373.