|
|
Application of mesenchymal stem cells in antineoplastic drugs delivery for tumor-targeted therapy |
WANG Xiaoling1,2( ),OUYANG Xumei1,2,SUN Xiaoyi1,*( ) |
1. Department of Pharmacy, Zhejiang University City College, Hangzhou 310015, China 2. College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China |
|
|
Abstract In recent years, a large number of studies have achieved tumor targeting by mesenchymal stem cells (MSC)-based delivery system attributed to the tumor tropism of MSCs. Biomacromolecules and antineoplastic drugs loaded on MSC via internalization or cell membrane anchoring can be released or expressed at tumor site to perform their antitumor effects. The genetically modified MSC are extensively studied, however, the applications of MSCs in targeted delivery of antineoplastic drug with small molecules are not well summarized. In this review, MSCs homing mechanism and the distribution of injected MSCs in vivo is introduced; the examples of antitumor drug-primed MSCs and drug loaded MSCs are presented; the drug loading and releasing process from MSCs is also illustrated; finally, challenges and future perspectives of MSCs-based drug delivery system on realizing its full potential are prospected.
|
Received: 11 May 2018
Published: 23 January 2019
|
|
Corresponding Authors:
SUN Xiaoyi
E-mail: lingxiaowangjy@163.com;sunxiaoyi@zucc.edu.cn
|
基于间充质干细胞的小分子化学药物肿瘤靶向递送系统研究进展
近年来,大量研究通过细胞内化或细胞膜结合的方式将生物大分子或小分子化学药物负载于间充质干细胞(MSC)上,利用其天然的肿瘤归巢特性实现药物的靶向递送,继而通过在靶部位药物的释放或基因表达,达到肿瘤治疗的目的。基因修饰MSC的研究较为成熟,而递送小分子化学药物的研究起步较晚。本文从MSC肿瘤迁移机制、细胞注射后体内分布特点入手,总结了MSC在小分子化学药物肿瘤靶向递送中的研究;同时介绍了MSC与原型药物、载药纳米粒构建的复合系统的载药、释药过程,展望了该系统遇到的挑战和应用前景。
关键词:
肿瘤,
间质干细胞/细胞学,
纳米球,
抗肿瘤药,
药物释放系统,
综述
|
|
[1] |
CHULPANOVA D S , KITAEVA K V , TAZETDINOVA L G et al. Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment[J]. Front Pharmacol, 2018, 9:259
doi: 10.3389/fphar.2018.00259
|
|
|
[2] |
FURLANI D , UGURLUCAN M , ONG L et al. Is the intravascular administration of mesenchymal stem cells safe? Mesenchymal stem cells and intravital microscopy[J]. Microvasc Res, 2009, 77 (3): 370- 376
doi: 10.1016/j.mvr.2009.02.001
|
|
|
[3] |
LEE R H , PULIN A A , SEO M J et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6[J]. Cell Stem Cell, 2009, 5 (1): 54- 63
doi: 10.1016/j.stem.2009.05.003
|
|
|
[4] |
WANG X , CHEN H , ZENG X et al. Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system[J]. Acta Pharm Sin B, 2018, in press
|
|
|
[5] |
NYSTEDT J , ANDERSON H , TIKKANEN J et al. Cell surface structures influence lung clearance rate of systemically infused mesenchymal stromal cells[J]. Stem Cells, 2013, 31 (2): 317- 326
doi: 10.1002/stem.v31.2
|
|
|
[6] |
GHOLAMREZANEZHAD A , MIRPOUR S , BAGHERI M et al. In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis[J]. Nucl Med Biol, 2011, 38 (7): 961- 967
doi: 10.1016/j.nucmedbio.2011.03.008
|
|
|
[7] |
KIM S M , JEONG C H , WOO J S et al. In vivo near-infrared imaging for the tracking of systemically delivered mesenchymal stem cells:tropism for brain tumors and biodistribution[J]. Int J Nanomedicine, 2016, 11:13- 23
|
|
|
[8] |
DE WITTE S F H , LUK F , SIERRA P J M et al. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells[J]. Stem Cells, 2018, 36 (4): 602- 615
doi: 10.1002/stem.v36.4
|
|
|
[9] |
GALLEU A , RIFFO-VASQUEZ Y , TRENTO C et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation[J]. Sci Transl Med, 2017, 9 (416): eaam7828
doi: 10.1126/scitranslmed.aam7828
|
|
|
[10] |
TEG K , DLJ T , DENMEADE S R et al. Concise review:mesenchymal stem cell-based drug delivery:the good, the bad, the ugly, and the promise[J]. Stem Cells Transl Med, 2018, 7 (9): 651- 663
doi: 10.1002/sctm.18-0024
|
|
|
[11] |
TOMA C , WAGNER W R , BOWRY S et al. Fate of culture-expanded mesenchymal stem cells in the microvasculature:in vivo observations of cell kinetics[J]. Circ Res, 2009, 104 (3): 398- 402
doi: 10.1161/CIRCRESAHA.108.187724
|
|
|
[12] |
FISCHER U M , HARTING M T , JIMENEZ F et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery:the pulmonary first-pass effect[J]. Stem Cells Dev, 2009, 18 (5): 683- 692
doi: 10.1089/scd.2008.0253
|
|
|
[13] |
ZANETTI A , GRATA M , ETLING E B et al. Suspension-expansion of bone marrow results in small mesenchymal stem cells exhibiting increased transpulmonary passage following intravenous administration[J]. Tissue Eng Part C Methods, 2015, 21 (7): 683- 692
doi: 10.1089/ten.tec.2014.0344
|
|
|
[14] |
GILAZIEVA Z , TAZETDINOVA L , ARKHIPOVA S et al. Effect of cisplatin on ultrastructure and viability of adipose-derived mesenchymal stem cells[J]. Bio Nano Science, 2016, 6 (4): 534- 539
|
|
|
[15] |
NICOLAY N H , LOPEZ P R , RVHLE A et al. Mesenchymal stem cells maintain their defining stem cell characteristics after treatment with cisplatin[J]. Sci Rep, 2016, 6:20035
doi: 10.1038/srep20035
|
|
|
[16] |
PESSINA A, BONOMI A, COCCè V, et al. Mesenchymal stromal cells primed with paclitaxel provide a new approach for cancer therapy[J/OL]. PLoS One, 2011, 6(12): e28321.
|
|
|
[17] |
BONOMI A , SILINI A , VERTUA E et al. Human amniotic mesenchymal stromal cells (hAMSCs) as potential vehicles for drug delivery in cancer therapy:an in vitro study[J]. Stem Cell Res Ther, 2015, 6 (1): 155
|
|
|
[18] |
PETRELLA F , COCCè V , MASIA C et al. Paclitaxel-releasing mesenchymal stromal cells inhibit in vitro proliferation of human mesothelioma cells[J]. Biomed Pharmacother, 2017, 87:755- 758
doi: 10.1016/j.biopha.2017.01.118
|
|
|
[19] |
BONOMI A , STEIMBERG N , BENETTI A et al. Paclitaxel-releasing mesenchymal stromal cells inhibit the growth of multiple myeloma cells in a dynamic 3D culture system[J]. Hematol Oncol, 2017, 35 (4): 693- 702
doi: 10.1002/hon.v35.4
|
|
|
[20] |
PESSINA A , COCCè V , PASCUCCI L et al. Mesenchymal stromal cells primed with Paclitaxel attract and kill leukaemia cells, inhibit angiogenesis and improve survival of leukaemia-bearing mice[J]. Br J Haematol, 2013, 160 (6): 766- 778
doi: 10.1111/bjh.12196
|
|
|
[21] |
BRINI A T , COCCè V , FERREIRA L M et al. Cell-mediated drug delivery by gingival interdental papilla mesenchymal stromal cells (GinPa-MSCs) loaded with paclitaxel[J]. Expert Opin Drug Deliv, 2016, 13 (6): 789- 798
|
|
|
[22] |
COCCè V , FARRONATO D , BRINI A T et al. Drug loaded gingival mesenchymal stromal cells (GinPa-MSCs) inhibit in vitro proliferation of oral squamous cell carcinoma[J]. Sci Rep, 2017, 7 (1): 9376
doi: 10.1038/s41598-017-09175-4
|
|
|
[23] |
COCCE V , BALDUCCI L , FALCHETTI M L et al. Fluorescent immortalized human adipose derived stromal cells (hASCs-TS/GFP+) for studying cell drug delivery mediated by microvesicles[J]. Anticancer Agents Med Chem, 2017, 17 (11): 1578- 1585
|
|
|
[24] |
PASCUCCI L , COCCè V , BONOMI A et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth:a new approach for drug delivery[J]. J Control Release, 2014, 192:262- 270
doi: 10.1016/j.jconrel.2014.07.042
|
|
|
[25] |
PESSINA A , LEONETTI C , ARTUSO S et al. Drug-releasing mesenchymal cells strongly suppress B16 lung metastasis in a syngeneic murine model[J]. J Exp Clin Cancer Res, 2015, 34:82
doi: 10.1186/s13046-015-0200-3
|
|
|
[26] |
PACIONI S , D'ALESSANDRIS Q G , GIANNETTI S et al. Mesenchymal stromal cells loaded with paclitaxel induce cytotoxic damage in glioblastoma brain xenografts[J]. Stem Cell Res Ther, 2015, 6:194
doi: 10.1186/s13287-015-0185-z
|
|
|
[27] |
BONOMI A , GHEZZI E , PASCUCCI L et al. Effect of canine mesenchymal stromal cells loaded with paclitaxel on growth of canine glioma and human glioblastoma cell lines[J]. Vet J, 2017, 223:41- 47
doi: 10.1016/j.tvjl.2017.05.005
|
|
|
[28] |
KALIMUTHU S , ZHU L , OH J M et al. Migration of mesenchymal stem cells to tumor xenograft models and in vitro drug delivery by doxorubicin[J]. Int J Med Sci, 2018, 15 (10): 1051- 1061
doi: 10.7150/ijms.25760
|
|
|
[29] |
BONOMI A , SORDI V , DUGNANI E et al. Gemcitabine-releasing mesenchymal stromal cells inhibit in vitro proliferation of human pancreatic carcinoma cells[J]. Cytotherapy, 2015, 17 (12): 1687- 1695
doi: 10.1016/j.jcyt.2015.09.005
|
|
|
[30] |
RIMOLDI I , COCCè V , FACCHETTI G et al. Uptake-release by MSCs of a cationic platinum(Ⅱ) complex active in vitro on human malignant cancer cell lines[J]. Biomed Pharmacother, 2018, 108:111- 118
doi: 10.1016/j.biopha.2018.09.040
|
|
|
[31] |
CLAVREUL A , POURBAGHI-MASOULEH M , ROGER E et al. Human mesenchymal stromal cells as cellular drug-delivery vectors for glioblastoma therapy:a good deal?[J]. J Exp Clin Cancer Res, 2017, 36 (1): 135
doi: 10.1186/s13046-017-0605-2
|
|
|
[32] |
YAO S , LI X , LIU J et al. Maximized nanodrug-loaded mesenchymal stem cells by a dual drug-loaded mode for the systemic treatment of metastatic lung cancer[J]. Drug Deliv, 2017, 24 (1): 1372- 1383
doi: 10.1080/10717544.2017.1375580
|
|
|
[33] |
DAI T , YANG E , SUN Y et al. Preparation and drug release mechanism of CTS-TAX-NP-MSCs drug delivery system[J]. Int J Pharm, 2013, 456 (1): 186- 194
doi: 10.1016/j.ijpharm.2013.07.070
|
|
|
[34] |
SADHUKHA T , O'BRIEN T D , PRABHA S . Nano-engineered mesenchymal stem cells as targeted therapeutic carriers[J]. J Control Release, 2014, 196:243- 251
doi: 10.1016/j.jconrel.2014.10.015
|
|
|
[35] |
WANG X , GAO J , OUYANG X et al. Mesenchymal stem cells loaded with paclitaxel-poly(lactic-co-glycolic acid) nanoparticles for glioma-targeting therapy[J]. Int J Nanomedicine, 2018, 13:5231- 5248
doi: 10.2147/IJN
|
|
|
[36] |
YANES R E , TARN D , HWANG A A et al. Involvement of lysosomal exocytosis in the excretion of mesoporous silica nanoparticles and enhancement of the drug delivery effect by exocytosis inhibition[J]. Small, 2013, 9 (5): 697- 704
doi: 10.1002/smll.v9.5
|
|
|
[37] |
OH N , PARK J H . Endocytosis and exocytosis of nanoparticles in mammalian cells[J]. Int J Nanomedicine, 2014, 9 (Suppl 1): 51- 63
|
|
|
[38] |
SAKHTIANCHI R , MINCHIN R F , LEE K B et al. Exocytosis of nanoparticles from cells:role in cellular retention and toxicity[J]. Adv Colloid Interface Sci, 2013, 201-202:18- 29
doi: 10.1016/j.cis.2013.10.013
|
|
|
[39] |
EL-DAKDOUKI M H , PURé E , HUANG X . Development of drug loaded nanoparticles for tumor targeting. Part 2:Enhancement of tumor penetration through receptor mediated transcytosis in 3D tumor models[J]. Nanoscale, 2013, 5 (9): 3904- 3911
doi: 10.1039/c3nr90022c
|
|
|
[40] |
LIU S L , ZHANG Z L , SUN E Z et al. Visualizing the endocytic and exocytic processes of wheat germ agglutinin by quantum dot-based single-particle tracking[J]. Biomaterials, 2011, 32 (30): 7616- 7624
doi: 10.1016/j.biomaterials.2011.06.046
|
|
|
[41] |
ROGER M , CLAVREUL A , VENIER-JULIENNE M C et al. Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors[J]. Biomaterials, 2010, 31 (32): 8393- 8401
doi: 10.1016/j.biomaterials.2010.07.048
|
|
|
[42] |
LAYEK B , SADHUKHA T , PANYAM J et al. Nano-engineered mesenchymal stem cells increase therapeutic efficacy of anticancer drug through true active tumor targeting[J]. Mol Cancer Ther, 2018, 17 (6): 1196- 1206
doi: 10.1158/1535-7163.MCT-17-0682
|
|
|
[43] |
ZHAO Y , TANG S , GUO J et al. Targeted delivery of doxorubicin by nano-loaded mesenchymal stem cells for lung melanoma metastases therapy[J]. Sci Rep, 2017, 7:44758
doi: 10.1038/srep44758
|
|
|
[44] |
ZHANG X , YAO S , LIU C et al. Tumor tropic delivery of doxorubicin-polymer conjugates using mesenchymal stem cells for glioma therapy[J]. Biomaterials, 2015, 39:269- 281
doi: 10.1016/j.biomaterials.2014.11.003
|
|
|
[45] |
DUCHI S , SOTGIU G , LUCARELLI E et al. Mesenchymal stem cells as delivery vehicle of porphyrin loaded nanoparticles:effective photoinduced in vitro killing of osteosarcoma[J]. J Control Release, 2013, 168 (2): 225- 237
doi: 10.1016/j.jconrel.2013.03.012
|
|
|
[46] |
CAO S , GUO J , HE Y et al. Nano-loaded human umbilical cord mesenchymal stem cells as targeted carriers of doxorubicin for breast cancer therapy[J]. Artif Cells Nanomed Biotechnol, 2018, 1- 11
|
|
|
[47] |
PARIS J L , DE LA TORRE P , MANZANO M et al. Decidua-derived mesenchymal stem cells as carriers of mesoporous silica nanoparticles. In vitro and in vivo evaluation on mammary tumors[J]. Acta Biomater, 2016, 33:275- 282
doi: 10.1016/j.actbio.2016.01.017
|
|
|
[48] |
WU J , LIU Y , TANG Y et al. Synergistic chemo-photothermal therapy of breast cancer by mesenchymal stem cell-encapsulated yolk-shell GNR@HPMO-PTX nanospheres[J]. ACS Appl Mater Interfaces, 2016, 8 (28): 17927- 17935
doi: 10.1021/acsami.6b05677
|
|
|
[49] |
KANG S , BHANG S H , HWANG S et al. Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy[J]. ACS Nano, 2015, 9 (10): 9678- 9690
doi: 10.1021/acsnano.5b02207
|
|
|
[50] |
HEREA D D , LABUSCA L , RADU E et al. Human adipose-derived stem cells loaded with drug-coated magnetic nanoparticles for in-vitro tumor cells targeting[J]. Mater Sci Eng C Mater Biol Appl, 2019, 94:666- 676
doi: 10.1016/j.msec.2018.10.019
|
|
|
[51] |
ROGER M , CLAVREUL A , HUYNH N T et al. Ferrociphenol lipid nanocapsule delivery by mesenchymal stromal cells in brain tumor therapy[J]. Int J Pharm, 2012, 423 (1): 63- 68
|
|
|
[52] |
HO Y J , CHIANG Y J , KANG S T et al. Camptothecin-loaded fusogenic nanodroplets as ultrasound theranostic agent in stem cell-mediated drug-delivery system[J]. J Control Release, 2018, 278:100- 109
doi: 10.1016/j.jconrel.2018.04.001
|
|
|
[53] |
WANG Q , CHENG H , PENG H et al. Non-genetic engineering of cells for drug delivery and cell-based therapy[J]. Adv Drug Deliv Rev, 2015, 91:125- 140
doi: 10.1016/j.addr.2014.12.003
|
|
|
[54] |
CHENG H , KASTRUP C J , RAMANATHAN R et al. Nanoparticulate cellular patches for cell-mediated tumoritropic delivery[J]. ACS nano, 2010, 4 (2): 625- 631
doi: 10.1021/nn901319y
|
|
|
[55] |
LI L , GUAN Y , LIU H et al. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy[J]. ACS Nano, 2011, 5 (9): 7462- 7470
doi: 10.1021/nn202399w
|
|
|
[56] |
SURYAPRAKASH S , LI M , LAO Y H et al. Graphene oxide cellular patches for mesenchymal stem cell-based cancer therapy[J]. Carbon, 2018, 129:863- 868
doi: 10.1016/j.carbon.2017.12.031
|
|
|
[57] |
KLOPP A H , GUPTA A , SPAETH E et al. Concise review:dissecting a discrepancy in the literature:do mesenchymal stem cells support or suppress tumor growth?[J]. Stem Cells, 2011, 29 (1): 11- 19
doi: 10.1002/stem.559
|
|
|
[58] |
SHI Y , DU L , LIN L et al. Tumour-associated mesenchymal stem/stromal cells:emerging therapeutic targets[J]. Nat Rev Drug Discov, 2017, 16 (1): 35- 52
|
|
|
[59] |
ZHANG T Y , HUANG B , WU H B et al. Synergistic effects of co-administration of suicide gene expressing mesenchymal stem cells and prodrug-encapsulated liposome on aggressive lung melanoma metastases in mice[J]. J Control Release, 2015, 209:260- 271
doi: 10.1016/j.jconrel.2015.05.007
|
|
|
[60] |
PACIONI S , D'ALESSANDRIS Q G , GIANNETTI S et al. Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts[J]. Stem Cell Res Ther, 2017, 8 (1): 53
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|