Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (5): 493-498    DOI: 10.3785/j.issn.1008-9292.2018.10.08
Roles of astrocytes in cerebral infarction and related therapeutic strategies
YE Jianyu1(),SUN Ziyu1,HU Weiwei2,*()
1. College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
2. Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
Download: HTML( 6 )   PDF(899KB)
Export: BibTeX | EndNote (RIS)      


Astrocytes are the most abundant cells in the central nervous system and play significant roles in normal brain. With cerebral infarction, astrocytes are activated as reactive astrocytes and form glial scars, which play an essential part in brain injury. According to their roles in neuroprotection after cerebral infarction, regulation of scar formation, nerve regeneration, maintenance of blood-brain barrier, promotion of angiogenesis and immune response, scholars have proposed a variety of therapeutic strategies based on targeting astrocytes. This article reviews the research progress on the changes in astrocyte signaling pathways before and after cerebral infarction and the related therapeutic strategies.

Key wordsBrain infarction      Astrocytes      Cicatrix/etiology      Review     
Received: 30 May 2018      Published: 23 January 2019
CLC:  R743  
Corresponding Authors: HU Weiwei     E-mail:;
Cite this article:

YE Jianyu,SUN Ziyu,HU Weiwei. Roles of astrocytes in cerebral infarction and related therapeutic strategies. J Zhejiang Univ (Med Sci), 2018, 47(5): 493-498.

URL:     OR



关键词: 脑梗死,  星形细胞,  瘢痕/病因学,  综述 
[1]   GORSHKOV K , AGUISANDA F , THORNE N et al. Astrocytes as targets for drug discovery[J]. Drug Discov Today, 2018, 23 (3): 673- 680
[2]   CHEN J , HE W , HU X et al. A role for ErbB signaling in the induction of reactive astrogliosis[J]. Cell Discov, 2017, 3:17044
doi: 10.1038/celldisc.2017.44
[3]   LECOMTE M D , SHIMADA I S , SHERWIN C et al. Notch1-STAT3-ETBR signaling axis controls reactive astrocyte proliferation after brain injury[J]. Proc Natl Acad Sci USA, 2015, 112 (28): 8726- 8731
doi: 10.1073/pnas.1501029112
[4]   LIDDELOW S A , GUTTENPLAN K A , CLARKE L E et al. Neurotoxic reactive astrocytes are induced by activated microglia[J]. Nature, 2017, 541 (7638): 481- 487
doi: 10.1038/nature21029
[5]   LIAO R J , JIANG L , WANG R R et al. Histidine provides long-term neuroprotection after cerebral ischemia through promoting astrocyte migration[J]. Sci Rep, 2015, 5:15356
doi: 10.1038/srep15356
[6]   HAYAKAWA K , ESPOSITO E , WANG X et al. Transfer of mitochondria from astrocytes to neurons after stroke[J]. Nature, 2016, 535 (7613): 551- 555
doi: 10.1038/nature18928
[7]   MISHRA A , REYNOLDS J P , CHEN Y et al. Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles[J]. Nat Neurosci, 2016, 19 (12): 1619- 1627
doi: 10.1038/nn.4428
[8]   BECERRACALIXTO A , CARDONAGíMEZ G P . The role of astrocytes in neuroprotection after brain stroke:potential in cell therapy[J]. Front Mol Neurosci, 2017, 10 (159): 88
[9]   TAKANO K , OGAWA M , KAWABE K et al. Inhibition of gap junction elevates glutamate uptake in cultured astrocytes[J]. Neurochem Res, 2018, 43 (1): 50- 56
doi: 10.1007/s11064-017-2316-7
[10]   VERMEHREN P , TROTMANLUCAS M , HECHLER B et al. Cooperation between NMDA-type glutamate and P2 receptors for neuroprotection during stroke:combining astrocyte and neuronal protection[J]. Neuroglia, 2018, 1 (1): 5
[11]   DOMITH I , SOCODATO R , PORTUGAL C C et al. Vitamin C modulates glutamate transport and NMDA receptor function in the retina[J]. J Neurochem, 2018, 144 (4): 408- 420
doi: 10.1111/jnc.2018.144.issue-4
[12]   MANGAS A , YAJEYA J , GONZáLEZ N et al. Overexpression of kynurenic acid in stroke:an endogenous neuroprotector?[J]. Ann Anat, 2017, 211:33- 38
doi: 10.1016/j.aanat.2017.01.002
[13]   GUO X , JIANG Q , TUCCITTO A et al. The AMPK-PGC-1α signaling axis regulates the astrocyte glutathione system to protect against oxidative and metabolic injury[J]. Neurobiol Dis, 2018, 113:59- 69
doi: 10.1016/j.nbd.2018.02.004
[14]   GUITART K , LOERS G , BUCK F et al. Improvement of neuronal cell survival by astrocyte-derived exosomes under hypoxic and ischemic conditions depends on prion protein[J]. Glia, 2016, 64 (6): 896- 910
[15]   LIU Z , CHOPP M . Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke[J]. Prog Neurobiol, 2016, 144:103- 120
doi: 10.1016/j.pneurobio.2015.09.008
[16]   YE L, YANG Y, ZHANG X, et al. The role of bFGF in the excessive activation of astrocytes is related to the inhibition of TLR4/NFκB signals[J/OL]. Int J Mol Sci, 2015, 17(1): E37.
[17]   陈戟, 谭秀华, 庞韬 et al. 右美托咪定对全脑缺氧缺血损伤大鼠海马内星形胶质细胞VEGF表达的影响[J]. 实用药物与临床, 2017, 20 (3): 241- 245
CHEN Ji , TAN Xiuhua , PANG Tao et al. Influences of dexmedetomidine on VEGF expressions of hippocampal astrocytes in rats with hypoxic-ischemic brain damage[J]. Practical Pharmacy and Clinical Remedies, 2017, 20 (3): 241- 245
[18]   ZHANG Y , HONG G , LEE K S et al. Inhibition of soluble epoxide hydrolase augments astrocyte release of vascular endothelial growth factor and neuronal recovery after oxygen-glucose deprivation[J]. J Neurochem, 2017, 140 (5): 814- 825
doi: 10.1111/jnc.13933
[19]   HUI S , MING J , XING F et al. Mesencephalic astrocyte-derived neurotrophic factor reduces cell apoptosis via upregulating HSP70 in SHSY-5Y cells[J]. Transl Neurodegener, 2017, 6 (1): 12
[20]   WANG X Y, SONG M M, BI S X, et al. MRI dynamically evaluates the therapeutic effect of recombinant human MANF on ischemia/reperfusion injury in rats[J/OL]. Int J Mol Sci, 2016, 17(9): E1476.
[21]   ZHAO Y , ZHANG Q , CHEN Z et al. Simvastatin combined with bone marrow stromal cells treatment activates astrocytes to ameliorate neurological function after ischemic stroke in rats[J]. Turk J Biol, 2016, 40 (2): 519- 528
[22]   ZHANG Q , CHEN Z W , ZHAO Y H et al. Bone marrow stromal cells combined with sodium ferulate and n-butylidenephthalide promote the effect of therapeutic angiogenesis via advancing astrocyte-derived trophic factors after ischemic stroke[J]. Cell Transplant, 2016, 26 (2): 229- 242
[23]   HUANG L , WU Z B , ZHUGE Q et al. Glial scar formation occurs in the human brain after ischemic stroke[J]. Int J Med Sci, 2014, 11 (4): 344- 348
doi: 10.7150/ijms.8140
[24]   ZBESKO J C , NGUYEN T V , YANG T et al. Glial scars are permeable to the neurotoxic environment of chronic stroke infarcts[J]. Neurobiol Dis, 2018, 112:63- 78
doi: 10.1016/j.nbd.2018.01.007
[25]   MOEENDARBARY E , WEBER I P , SHERIDAN G K et al. The soft mechanical signature of glial scars in the central nervous system[J]. Nat Commun, 2017, 8:14787
doi: 10.1038/ncomms14787
[26]   ABEYSINGHE H C S , PHILLIPS E L , CHINCHENG H et al. Modulating astrocyte transition after stroke to promote brain rescue and functional recovery:emerging targets include Rho kinase[J]. Int J Mol Sci, 2016, 17 (3): 288
doi: 10.3390/ijms17030288
[27]   CHEON S Y , CHO K J , SONG J et al. Knockdown of apoptosis signal-regulating kinase 1 affects ischaemia-induced astrocyte activation and glial scar formation[J]. Eur J Neurosci, 2016, 43 (7): 912- 922
doi: 10.1111/ejn.13175
[28]   YOSHIKAWA A , KAMIDE T , HASHIDA K et al. Deletion of Atf6α impairs astroglial activation and enhances neuronal death following brain ischemia in mice[J]. J Neurochem, 2015, 132 (3): 342- 353
doi: 10.1111/jnc.2015.132.issue-3
[29]   ZHANG H , LI Z S , NI Y et al. Abstract WMP38:inhibition of Rip1 kinase improves brain functional recovery after ischemic stroke via reducing astrocytic scar formation[J]. Stroke, 2017, 48 (suppl_1): :AWMP38
[30]   LEON T , JIHANE H L , JAMES B . Linking development and regeneration:ephrin-A1 attenuates glial scarring after adulthood stroke[J]. Front Cell Neurosci, 2016,
[31]   CHEN J , ZHANG J H , HU X M . Non-neuronal mechanisms of brain damage and repair after stroke[M]. Germany: Springer International Publishing, 2016: 111- 131
[32]   MAGNUSSON J P , G?RITZ C , TATARISHVILI J et al. A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse[J]. Science, 2014, 346 (6206): 237- 241
doi: 10.1126/science.346.6206.237
[33]   MO J L , LIU Q , KOU Z W et al. MicroRNA-365 modulates astrocyte conversion into neuron in adult rat brain after stroke by targeting Pax6[J]. Glia, 2018, 66 (7): 1346- 1362
doi: 10.1002/glia.v66.7
[34]   SHINDO A , MAKI T , MANDEVILLE E T et al. Astrocyte-derived pentraxin 3 supports blood-brain barrier integrity under acute phase of stroke[J]. Stroke, 2016, 47 (4): 1094- 1100
doi: 10.1161/STROKEAHA.115.012133
[35]   ALVAREZ J I , DODELETDEVILLERS A , KEBIR H et al. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence[J]. Science, 2011, 334 (6063): 1727
doi: 10.1126/science.1206936
[36]   WANG Y, JIN S, SONOBE Y, et al. Interleukin-1β induces blood-brain barrier disruption by downregulating Sonic hedgehog in astrocytes[J/OL]. PLoS One, 2014, 9(10): e110024.
[37]   CHU H , YANG X , HUANG C et al. Apelin-13 protects against ischemic blood-brain barrier damage through the effects of aquaporin-4[J]. Cerebrovasc Dis, 2017, 44 (1-2): 10- 25
doi: 10.1159/000460261
[38]   HE Q W , XIA Y P , CHEN S C et al. Astrocyte-derived sonic hedgehog contributes to angiogenesis in brain microvascular endothelial cells via RhoA/ROCK pathway after oxygen-glucose deprivation[J]. Mol Neurobiol, 2013, 47 (3): 976- 987
doi: 10.1007/s12035-013-8396-8
[39]   LUO C , YI B , FAN W et al. Enhanced angiogenesis and astrocyte activation by ecdysterone treatment in a focal cerebral ischemia rat model[J]. Acta Neurochir Suppl, 2011, 110 (Pt1): 151- 155
[40]   WANG J , SHI Y , ZHANG L et al. Omega-3 polyunsaturated fatty acids enhance cerebral angiogenesis and provide long-term protection after stroke[J]. Neurobiol Dis, 2014, 68:91- 103
doi: 10.1016/j.nbd.2014.04.014
[41]   CEKANAVICIUTE E , FATHALI N , DOYLE K P et al. Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice[J]. Glia, 2014, 62 (8): 1227- 1240
doi: 10.1002/glia.22675
[42]   LI M, LI Z, YAO Y, et al. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity[J/OL]. Proc Natl Acad Sci USA, 2017, 114(3): E396-E405.
[43]   CHEN J , YE X , YAN T et al. Adverse effects of bone marrow stromal cell treatment of stroke in diabetic rats[J]. Stroke, 2011, 42 (12): 3551- 3558
doi: 10.1161/STROKEAHA.111.627174
[1] ZHAO Huihui, TANG Huifang. Research progress on composite animal models of inflammatory bowel disease based on gene knockout[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 665-670.
[2] CAO Liqin, SHI Jimin. Graft failure in allogeneic hematopoietic stem cell trans-plantation[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 651-658.
[3] TANG Hexiao, BAI Yuquan, SHEN Wulin, ZHAO Jinping. Research progress on interleukin-6 in lung cancer[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 659-664.
[4] XIANG Yilang, WU Ziheng, ZHANG Hongkun. Progress on in situ fenestration during thoracic endovascular aortic repair[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 617-622.
[5] LI Gaopeng,HE Jia,WANG Qingqing. Progress on cancer associated fibroblasts in tumor immunoregulation[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 558-563.
[6] WANG Xiaoling,OUYANG Xumei,SUN Xiaoyi. Application of mesenchymal stem cells in antineoplastic drugs delivery for tumor-targeted therapy[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 525-533.
[7] HU Caiqin,ZHU Biao. Progress on pathogenesis of progressive multifocal leukoence-phalopathy[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 534-540.
[8] SHI Ting,YE Xiujin. Roles of CCAAT enhancer binding protein α in acute myeloblastic leukemia[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 552-557.
[9] HE Jiayi,ZHANG Xinmei. Research progress on oxidative stress in pathogenesis of endometriosis[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 419-425.
[10] XU Zhili,CUI Yiyi,LI Yan,GUO Yong. Research progress on nonspecific immune microenvironment in breast cancer[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 426-434.
[11] WANG Xingxing,WANG Panpan,YANG Xuyan. Research progress on systemic lupus erythematosus overlapping organ-specific autoimmune diseases[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 435-440.
[12] ZHANG Lifeng,ZHANG Xinmei. Research progress on roles of vitamin D in endometriosis[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 413-418.
[13] QIAN Bo,ZHANG Yanling,MO Xuming. Research progress on transcription factors and signal pathways involved in congenital esophageal atresia[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 239-243.
[14] ZHANG Xiaoyan,KANG Lijun. Molecular and cell biological mechanism of olfactory adaptation in Caenorhabditis elegans[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 307-312.
[15] TIAN Guangfeng,GAO Hui,HU Shasha,SHU Qiang. Research progress on genetic and epigenetic mechanisms in congenital heart disease[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 227-238.