Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (5): 487-492    DOI: 10.3785/j.issn.1008-9292.2018.10.07
G protein-coupled receptor 17 is involved in CoCl2-induced hypoxic injury in RGC-5 cells
LIN Kana1(),LIN Meili2,GU Yingfen1,ZHANG Shunguo1,HUANG Shiying1,*()
1. Department of Pharmacy, Shanghai Children's Medical Center Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
2. Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
Download: HTML( 10 )   PDF(1118KB)
Export: BibTeX | EndNote (RIS)      


Objective: To investigate the effect of G protein-coupled receptor 17 (GPR17) on hypoxia injury in retinal ganglion cells in vitro. Methods: CoCl2 (400 μmol/L) was used to induce hypoxic injury in RGC-5 cells. The expression of GPR17 and the effect of GPR17 ligands were investigated, and the role of GPR17 in hypoxia injury was further studied by transfection of RGC-5 cells with GPR17 small interfering RNA (siRNA). The cell viability was determined by MTT and the cell apoptosis rate was detected by flow cytometry analysis. The expression of GPR17 mRNA was determined with RT-PCR. Results: mRNA expressions of GPR17 in RGC-5 cells with and without CoCl2 treatment were 0.36±0.05 and 0.26±0.08(P < 0.01). Compared with hypoxia without any treatment, pretreatment with GPR17 agonists (LTD4, UDP, UDP-G) significantly reduced cell viability (the survival rates of cells decreased by 29.6%, 31.8% and 33.9%, all P < 0.01), while the effect of GPR17 antagonist (cangrelor) was the opposite (the survival rates of cells increased by 33.2%, P < 0.01). Transfection with GPR17 SiRNA inhibited hypoxia-induced up-expression of GPR17 mRNA (P < 0.01)and reduced cell apoptosis[rates of cell apoptosis were(39.73±2.06)%, (42.50±3.64)% and (24.98±2.16)% for blank control, NC siRNA and GPR17 siRNA groups, P < 0.01]. Conclusion: GPR17 may mediate hypoxia injury in RGC-5 cells, while the knockdown of GPR17 can reduce the hypoxia injury.

Key wordsReceptors, G-protein-coupled/antagonists & inhibitors      Cobalt/pharmacology      Retinal ganglion cells/drug effects      Cell line      Anoxia/drug therapy      Apoptosis      Cells, cultured     
Received: 25 June 2018      Published: 23 January 2019
CLC:  R774  
Corresponding Authors: HUANG Shiying     E-mail:;
Cite this article:

LIN Kana,LIN Meili,GU Yingfen,ZHANG Shunguo,HUANG Shiying. G protein-coupled receptor 17 is involved in CoCl2-induced hypoxic injury in RGC-5 cells. J Zhejiang Univ (Med Sci), 2018, 47(5): 487-492.

URL:     OR


目的: 探讨G蛋白偶联受体17(GPR17)在视网膜神经节细胞缺氧损伤中的作用。方法: 采用氯化钴(400 μmol/L)诱导RGC-5细胞化学缺氧损伤,观察GPR17的表达及GPR17配体的作用,并通过小干扰RNA(siRNA)降低GPR17的表达深入研究GPR17在细胞缺氧损伤中的作用。MTT法检测细胞存活率;流式细胞术检测细胞凋亡率;RT-PCR法检测GPR17 mRNA相对表达量。结果: 氯化钴处理后,细胞中GPR17 mRNA相对表达量由0.26±0.08上调至0.36±0.05(P < 0.01)。与未经GPR17配体预处理的缺氧细胞比较,GPR17激动剂尿苷5'-二磷酸二钠盐、尿苷5'-二磷酸葡萄糖二钠盐、LTD4预处理细胞的存活率分别降低了29.6%、31.8%、33.9%(均P < 0.01);而其拮抗剂坎格雷洛预处理细胞的存活率升高了33.2%(P < 0.01)。GPR17 siRNA处理可以抑制缺氧导致的GPR17 mRNA表达上调(P < 0.01),减少缺氧导致的细胞凋亡[未加siRNA、NC siRNA和GPR17 siRNA组细胞的凋亡率分别为(39.73±2.06)%,(42.50±3.64)%和(24.98±2.16)%,P < 0.01]。结论: GPR17介导了RGC-5细胞的缺氧损伤,抑制GPR17表达可减轻缺氧损伤。

关键词: 受体, G-蛋白偶联/拮抗剂和抑制剂,  钴/药理学,  视网膜神经节细胞/药物作用,  细胞系,  缺氧/药物疗法,  细胞凋亡,  细胞, 培养的 
引物名称 序列(5'→3')
Tab 1 RT-PCR primer sequences
Fig 1 Effect of hypoxia on the expression of GPR17 mRNA
Fig 2 Effect of GPR17 ligands on CoCl2-induced hypoxia in RGC-5 cells(n=6)
Fig 3 The effect of GPR17 siRNA on the expression of GPR17 mRNA under hypoxic conditions(n=4)
Fig 4 Effect of GPR17 siRNA on cell apoptosis under hypoxic conditions(n=4)
[1]   SERNAGOR E , EGLEN S J , WONG R O . Development of retinal ganglion cell structure and function[J]. Prog Retin Eye Res, 2001, 20 (2): 139- 174
doi: 10.1016/S1350-9462(00)00024-0
[2]   OSBORNE N N , CASSON R J , WOOD J P et al. Retinal ischemia:mechanisms of damage and potential therapeutic strategies[J]. Prog Retin Eye Res, 2004, 23 (1): 91- 147
doi: 10.1016/j.preteyeres.2003.12.001
[3]   ROVATI G E , CAPRA V . Cysteinyl-leukotriene receptors and cellular signals[J]. Scientific World Journal, 2007, 7:1375- 1392
doi: 10.1100/tsw.2007.185
[4]   CIANA P , FUMAGALLI M , TRINCAVELLI M L et al. The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor[J]. EMBO J, 2006, 25 (19): 4615- 4627
doi: 10.1038/sj.emboj.7601341
[5]   LECCA D, TRINCAVELLI M L, GELOSA P, et al. The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair[J/OL]. PLoS One, 2008, 3(10): e3579.
[6]   CHEN Y , WU H , WANG S et al. The oligodendrocyte-specific G protein-coupled receptor GPR17 is a cell-intrinsic timer of myelination[J]. Nat Neurosci, 2009, 12 (11): 1398- 1406
doi: 10.1038/nn.2410
[7]   林卡娜, 林美丽, 魏尔清 . 葡萄籽原花青素对氯化钴诱导的视网膜神经节细胞RGC-5缺氧损伤的保护作用[J]. 浙江大学学报(医学版), 2015, 44 (1): 24- 29
LIN Kana , LIN Meili , WEI Erqing . Protective effect of grape seed proanthocyanidin on cultured RGC-5 cells against CoCl2-induced hypoxic injury[J]. Journal of Zhejiang University(Medical Sciences), 2015, 44 (1): 24- 29
doi: 10.3785/j.issn.1008-9292.2015.01.004
[8]   DANIELE S , LECCA D , TRINCAVELLI M L et al. Regulation of PC12 cell survival and differentiation by the new P2Y-like receptor GPR17[J]. Cell Signal, 2010, 22 (4): 697- 706
doi: 10.1016/j.cellsig.2009.12.006
[9]   AMES A 3rd . Energy requirements of CNS cells as related to their function and to their vulnerability to ischemia:a commentary based on studies on retina[J]. Can J Physiol Pharmacol, 1992, 70 (Suppl): S158- 164
[10]   MOZAFFARIEH M , GRIESHABER M C , ORGUL S et al. The potential value of natural antioxidative treatment in glaucoma[J]. Surv Ophthalmol, 2008, 53 (5): 479- 505
doi: 10.1016/j.survophthal.2008.06.006
[11]   TSUI L , FONG T H , WANG I J . YC-1 targeting of hypoxia-inducible factor-1alpha reduces RGC-5 cell viability and inhibits cell proliferation[J]. Mol Vis, 2012, 18:1594- 1603
[12]   ZHU X , ZHOU W , CUI Y et al. Pilocarpine protects cobalt chloride-induced apoptosis of RGC-5 cells:involvement of muscarinic receptors and HIF-1 alpha pathway[J]. Cell Mol Neurobiol, 2010, 30 (3): 427- 435
doi: 10.1007/s10571-009-9467-2
[13]   HARA A , NIWA M , AOKI H et al. A new model of retinal photoreceptor cell degeneration induced by a chemical hypoxia-mimicking agent, cobalt chloride[J]. Brain Res, 2006, 1109 (1): 192- 200
[14]   CALTANA L , MERELLI A , LAZAROWSKI A et al. Neuronal and glial alterations due to focal cortical hypoxia induced by direct cobalt chloride (CoCl2) brain injection[J]. Neurotox Res, 2009, 15 (4): 348- 358
doi: 10.1007/s12640-009-9038-9
[15]   BONFANTI E, GELOSA P, FUMAGALLI M, et al. The role of oligodendrocyte precursor cells expressing the GPR17 receptor in brain remodeling after stroke[J/OL]. Cell Death Dis, 2017, 8(6): e2871.
[16]   VIGANO F , SCHNEIDER S , CIMINO M et al. GPR17 expressing NG2-Glia:oligodendrocyte progenitors serving as a reserve pool after injury[J]. Glia, 2016, 64 (2): 287- 299
doi: 10.1002/glia.22929
[17]   FRANKE H , PARRAVICINI C , LECCA D et al. Changes of the GPR17 receptor, a new target for neurorepair, in neurons and glial cells in patients with traumatic brain injury[J]. Purinergic Signal, 2013, 9 (3): 451- 462
doi: 10.1007/s11302-013-9366-3
[18]   ZHAO B , ZHAO C Z , ZHANG X Y et al. The new P2Y-like receptor G protein-coupled receptor 17 mediates acute neuronal injury and late microgliosis after focal cerebral ischemia in rats[J]. Neuroscience, 2012, 202:42- 57
doi: 10.1016/j.neuroscience.2011.11.066
[1] LIANG Gang, NIU Yumiao, LI Yihan, Wei Anyi, DONG Jingyin, ZENG Linghui. Rapamycin treatment starting at 24 h after cerebral ischemia/reperfusion exhibits protective effect on brain injury in rats[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 443-449.
[2] LIN Meina,XU Ruiyuan,ZHANG Tao,ZHANG Lin,MEI Xuqiao. Expression of c-FLIP in peripheral blood mononuclear cells of patients with rheumatoid arthritis and its relation with extrinsic apoptotic pathway[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 381-388.
[3] DING Jingjing,LU Yunbi. Research progress on receptor interacting proteins in inflammation[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 89-96.
[4] ZHANG Binbin, WU Meiling, LIU Luna, ZHU Yangbin, KAI Jiejing, ZENG Linghui. Inhibiting mammalian target of rapamycin signaling pathway improves cognitive function in mice with chronic cerebral ischemia[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 405-412.
[5] LI Yu, WANG Yueyue, WANG Haifeng, ZHANG Lingyu, DING Yongxing, CHEN Sulian, YANG Qingling, CHEN Changjie. Effects of lncRNA RP11-770J1.3 and TMEM25 expression on paclitaxel resistance in human breast cancer cells[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 364-370.
[6] WANG Haifeng, CHEN Tiantian, WANG Yueyue, LI Yu, ZHANG Lingyu, DING Yongxing, CHEN Sulian, WANG Wenrui, YANG Qingling, CHEN Changjie. CXC chemokine receptor 4 regulates breast cancer cell cycle through S phase kinase associated protein 2[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 357-363.
[7] TIAN Hua, CHEN Yang, ZHAO Jiangang, LIU Daren, LIANG Gang, GONG Weihua, CHEN Li, WU Yulian. Effects of siRNAs targeting CD97 immune epitopes on biological behavior in breast cancer cell line MDA-MB231[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 341-348.
[8] CAO Peng, LENG Dongjin, LI Ying, ZHANG Ziwei, LIU Lei, LI Xiaoyan. Progress on anti-tumor molecular mechanisms of dihydroartemisinin[J]. J Zhejiang Univ (Med Sci), 2016, 45(5): 501-507.
[9] LIN Weiren, CHEN Yatian, ZENG Linghui, YING Rongbiao, ZHU Feng. Effect of a novel EZH2 inhibitor GSK126 on prostate cancer cells[J]. J Zhejiang Univ (Med Sci), 2016, 45(4): 356-363.
[10] LOU Pengrong, SUN Xiaonan, ZHOU Jundong, ZOU Shitao. Effect of RAD18-siRNA on proliferation and chemotherapy sensitivity of human esophageal squamous cell carcinoma ECA-109 cells[J]. J Zhejiang Univ (Med Sci), 2016, 45(4): 364-370.
[11] WANG Cheng, WANG Wenjun, YANG Wei, YU Xiaohua, YAN Yiguo, ZHANG Jian, JIANG Zhisheng. MicroRNAs: a type of novel regulative factor for intervertebral disc degeneration[J]. J Zhejiang Univ (Med Sci), 2016, 45(2): 170-178.
[12] XU Li, ZHU Yuan-run, CHEN Jian, YANG Xiao-chun, LUO Pei-hua. Anticancer effect of SN-38 combined with sorafenib on hepatocellular carcinoma in vitro and its mechanism[J]. J Zhejiang Univ (Med Sci), 2015, 44(5): 486-492.
[13] ZOU Yu, GUO Chuan-gen, XU Shun-liang, PENG Zhi-yi, SUN Jun-hui. Influence of As2O3-lipiodol emulsion via transarterial embolization on a VX2 liver tumor model in rabbits[J]. J Zhejiang Univ (Med Sci), 2015, 44(5): 559-565.
[14] YANG Min-li, YE Zhao-ming. Extremely low frequency electromagnetic field induces apoptosis of osteosarcoma cells via oxidative stress[J]. J Zhejiang Univ (Med Sci), 2015, 44(3): 323-328.
[15] HAN Yan-xia, YOU Liang-shun, LIU Hui, MAO Li-ping, YE Xiu-jin, QIAN Wen-bin. Apoptosis of acute myeloid leukemia HL-60 cells induced by CDK inhibitor SNS-032 and its molecular mechanisms[J]. J Zhejiang Univ (Med Sci), 2015, 44(2): 174-178.