|
|
Effects of Honokiol on cognitive function in mice with kainic acid-induced epilepsy |
WANG Qingmei1( ),SHU Min1,XU Qianzi1,XIE Yiyi1,RUAN Shengzhe1,WANG Jianda2,*( ),ZENG Linghui1,*( ) |
1. School of Medicine, Zhejiang University City College, Hangzhou 310015, China 2. Department of Pediatrics, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China |
|
|
Abstract Objective: To investigate the effects of Honokiol on cognitive function in mice with epilepsy. Methods: Kainic acid (38 mg/kg) was intraperitoneally injected in 5 weeks old male ICR mice to induce epilepsy. Honokiol at dose of 3, 10, 30 mg/kg was given to epilepic mice by intraperitoneal injection for 10 days. Fluoro-Jade B staining was used to assess neuronal death; Morris water maze and Y maze tests were used to measure cognitive function such as learning and memory; Western blot was performed to detect the expression of acetylated superoxide dismutase (SOD), microtubule associated protein 1 light chain 3-Ⅱ (LC3-Ⅱ) and P62 in hippocampus tissue; thiobarbituric acid and WST-1 methods were used to detect malondialdehyde (MDA) and SOD. Results: Compared with control group, the levels of acetylated-SOD, MDA, LC3-Ⅱ, P62 and neuronal death increased, cognitive function and SOD decreased in model group (P < 0.05 or P < 0.01). Honokiol at the dose of 10 mg/kg and 30 mg/kg decreased SOD acetylation, MDA content, expression of LC3-Ⅱ and P62, as well as neuronal death, and the cognitive function was improved (P < 0.05 or P < 0.01), especially in 30 mg/kg Honokiol group. Conclusion: Honokiol alleviates oxidative stress and autophagy degradation disorder, decreases neuronal death, and therefore improves cognitive function in epilepsy mice.
|
Received: 12 September 2018
Published: 23 January 2019
|
|
Corresponding Authors:
WANG Jianda,ZENG Linghui
E-mail: 2747912115@qq.com;2515165@zju.edu.cn;zenglh@zucc.edu.cn
|
和厚朴酚对癫痫小鼠学习记忆能力的改善作用
目的: 探索和厚朴酚对癫痫小鼠学习记忆能力的改善作用并探讨其机制。方法: 5周龄雄性ICR小鼠采用腹腔注射红藻氨酸(38 mg/kg)的方式建立癫痫模型。治疗组小鼠腹腔注射和厚朴酚(3、10、30 mg/kg)10 d。Fluoro-Jade B染色法检测神经元活性;Morris水迷宫和Y迷宫实验观察小鼠学习记忆能力;蛋白质印迹法检测乙酰化超氧化物歧化酶(SOD)、微管相关蛋白1轻链3-Ⅱ(LC3-Ⅱ)和P62蛋白表达水平;硫代巴比妥酸法和WST-1法分别测定丙二醛和SOD等氧化应激产物的含量。结果: 与对照组比较,模型组神经元凋亡数量增加,学习记忆能力下降,乙酰化SOD和丙二醛表达量增加,SOD活性下降,LC3-Ⅱ和P62蛋白表达量增加(P < 0.05或P < 0.01);与模型组比较,和厚朴酚10 mg/kg和30 mg/kg均可减少神经元凋亡数量,改善学习记忆能力,并可逆转癫痫发作所致的丙二醛和SOD乙酰化水平,降低LC3-Ⅱ和P62的表达量(P < 0.05或P < 0.01),且药物剂量为30 mg/kg时效果更加显著。结论: 和厚朴酚可缓解癫痫发作导致的氧化应激和自噬降解障碍,减少神经元凋亡,从而改善癫痫小鼠的学习记忆能力。
关键词:
和厚朴酚/药理学,
癫痫/药物疗法,
记忆/药物作用,
学习/药物作用,
氧化应激,
自噬,
小鼠, 近交ICR
|
|
[1] |
NGUGI A K , BOTTOMLEY C , FEGAN G et al. Premature mortality in active convulsive epilepsy in rural Kenya:causes and associated factors[J]. Neurology, 2014, 82 (7): 582- 589
doi: 10.1212/WNL.0000000000000123
|
|
|
[2] |
HOLMES G L . Effects of early seizures on later behavior and epileptogenicity[J]. Ment Retard Dev Disabil Res Rev, 2004, 10 (2): 101- 105
doi: 10.1002/(ISSN)1098-2779
|
|
|
[3] |
LEE S E , KIBBY M Y , COHEN M J et al. Differences in memory functioning between children with attention-deficit/hyperactivity disorder and/or focal epilepsy[J]. Child Neuropsychol, 2016, 22 (8): 979- 1000
doi: 10.1080/09297049.2015.1060955
|
|
|
[4] |
SKIRROW C , CROSS J H , HARRISON S et al. Temporal lobe surgery in childhood and neuroanatomical predictors of long-term declarative memory outcome[J]. Brain, 2015, 138 (Pt 1): 80- 93
|
|
|
[5] |
LIN J J , MULA M , HERMANN B P . Uncovering the neurobehavioral comorbidities of epilepsy over the lifespan[J]. Lancet, 2012, 380 (9848): 1180- 1192
doi: 10.1016/S0140-6736(12)61455-X
|
|
|
[6] |
COYLE J T , PUTTFARCKEN P . Oxidative stress, glutamate, and neurodegenerative disorders[J]. Science, 1993, 262 (5134): 689- 695
doi: 10.1126/science.7901908
|
|
|
[7] |
FRANTSEVA M V , VELAZQUEZ J L , HWANG P A et al. Free radical production correlates with cell death in an in vitro model of epilepsy[J]. Eur J Neurosci, 2000, 12 (4): 1431- 1439
doi: 10.1046/j.1460-9568.2000.00016.x
|
|
|
[8] |
CHEN W , SUN Y , LIU K et al. Autophagy:a double-edged sword for neuronal survival after cerebral ischemia[J]. Neural Regen Res, 2014, 9 (12): 1210- 1216
doi: 10.4103/1673-5374.135329
|
|
|
[9] |
NILSSON P , SAIDO T C . Dual roles for autophagy:Degradation and secretion of Alzheimer's disease Aβ peptide[J]. Bioessays, 2014, 36 (6): 570- 578
doi: 10.1002/bies.201400002
|
|
|
[10] |
MCMAHON J , HUANG X , YANG J et al. Impaired autophagy in neurons after disinhibition of mammalian target of rapamycin and its contribution to epileptogenesis[J]. J Neurosci, 2012, 32 (45): 15704- 15714
doi: 10.1523/JNEUROSCI.2392-12.2012
|
|
|
[11] |
郝庆红, 陈冠华, 冯雅琪 et al. 厚朴中清除氧自由基主要有效成分的确定[J]. 河北大学学报(自然科学版), 2005, 25 (2): 164- 166, 178 HAO Qinghong , CHEN Guanhua , FENG Yaqi et al. Determination of the main efficient components in the herb of magnolia officinalis for eliminating oxygen radicals[J]. Journal of Hebei University(Natural Science Edition), 2005, 25 (2): 164- 166, 178
doi: 10.3969/j.issn.1000-1565.2005.02.011
|
|
|
[12] |
HAHM E R , SAKAO K , SINGH S V . Honokiol activates reactive oxygen species-mediated cytoprotective autophagy in human prostate cancer cells[J]. Prostate, 2014, 74 (12): 1209- 1221
doi: 10.1002/pros.v74.12
|
|
|
[13] |
RACINE R J . Modification of seizure activity by electrical stimulation. Ⅱ. Motor seizure[J]. Electroencephalogr Clin Neurophysiol, 1972, 32 (3): 281- 294
doi: 10.1016/0013-4694(72)90177-0
|
|
|
[14] |
ZENG L H , RENSING N R , WONG M . The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy[J]. J Neurosci, 2009, 29 (21): 6964- 6972
doi: 10.1523/JNEUROSCI.0066-09.2009
|
|
|
[15] |
SHARMA S , RAKOCZY S , BROWN-BORG H . Assessment of spatial memory in mice[J]. Life Sci, 2010, 87 (17-18): 521- 536
doi: 10.1016/j.lfs.2010.09.004
|
|
|
[16] |
HOLLEY A J , LUGO J N . Effects of an acute seizure on associative learning and memory[J]. Epilepsy Behav, 2016, 54:51- 57
doi: 10.1016/j.yebeh.2015.11.001
|
|
|
[17] |
BOWER M R , STEAD M , BOWER R S. et al. Evidence for consolidation of neuronal assemblies after seizures in humans[J]. J Neurosci, 2015, 35 (3): 999- 1010
doi: 10.1523/JNEUROSCI.3019-14.2015
|
|
|
[18] |
KOVAC S, DINKOVA KOSTOVA A T, HERRMANN A M, et al. Metabolic and homeostatic changes in seizures and acquired epilepsy-mitochondria, calcium dynamics and reactive oxygen species[J/OL]. Int J Mol Sci, 2017, 18(9): E1935.
|
|
|
[19] |
WOJSIAG J , ZOLTOWSKA K M , LASKOWSKA-KASZUB K et al. Oxidant/antioxidant imbalance in Alzheimer's disease:therapeutic and diagnostic prospects[J]. Oxid Med Cell Longev, 2018, 6435861
|
|
|
[20] |
JIN Y N, HWANG W Y, JO C, et al. Metabolic state determines sensitivity to cellular stress in Huntington disease: normalization by activation of PPARγ[J/OL]. PLoS One, 2012, 7(1): e30406.
|
|
|
[21] |
CHENG A , YANG Y , ZHOU Y et al. Mitochondrial SIRT3 mediates adaptive responses of neurons to exercise and metabolic and excitatory challenges[J]. Cell Metab, 2016, 23 (1): 128- 142
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|