Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (5): 443-449    DOI: 10.3785/j.issn.1008-9292.2018.10.01
    
Rapamycin treatment starting at 24 h after cerebral ischemia/reperfusion exhibits protective effect on brain injury in rats
LIANG Gang(),NIU Yumiao,LI Yihan,Wei Anyi,DONG Jingyin*(),ZENG Linghui*()
School of Medicine, Zhejiang University City College, Hangzhou 310015, China
Download: HTML( 47 )   PDF(1093KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To investigate whether rapamycin treatment starting at 24 h after cerebral ischemia/reperfusion(I/R) has protective effect on brain injury in rats. Methods: The rat I/R model was established by middle cerebral artery occlusion according to Longa's method. A total of 104 Sprague Dawley rats were randomly divided into sham group, model group, and rapamycin-treated groups (6 h or 24 h after modeling). Neurological function was assessed with neurological severity score (NSS). Triphenyl tetrazolium chloride (TTC) staining and Fluoro-Jade B (FJB) staining were used to examine the infarct volume and neuronal apoptosis, respectively. The expression of p-S6 protein in mTOR signaling pathway was detected by Western blot analysis. Results: Compared with sham group, NSS of the model group was significantly increased and TTC staining indicated obvious infarct area (all P < 0.01). Furthermore, significantly increased number of FJB-positive cells and p-S6 expression in the penumbra area were shown in the model group (all P < 0.01). Compared with the model group, both rapamycin-treated groups demonstrated decreased NSS, infarction volume and FJB positive cells as well as p-S6 expression in the penumbra area (P < 0.05 or P < 0.01). There was no significant difference between the groups of rapamycin administrated 6 h and 24 h after modeling (all P > 0.05). Conclusion: Rapamycin treatment starting at 24 h after I/R exhibits protective effect on brain injury in rats.



Key wordsBrain ischemia/drug therapy      Reperfusion injury/drug therapy      Neurons      Apoptosis      Protein kinases/physiology      Sirolimus/pharmacology      Signal transduction     
Received: 12 September 2018      Published: 23 January 2019
CLC:  R743  
Corresponding Authors: DONG Jingyin,ZENG Linghui   
Cite this article:

LIANG Gang, NIU Yumiao, LI Yihan, Wei Anyi, DONG Jingyin, ZENG Linghui. Rapamycin treatment starting at 24 h after cerebral ischemia/reperfusion exhibits protective effect on brain injury in rats. J Zhejiang Univ (Med Sci), 2018, 47(5): 443-449.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2018.10.01     OR     http://www.zjujournals.com/med/Y2018/V47/I5/443


雷帕霉素在大鼠局灶性脑缺血再灌注后24 h给药对脑损伤的保护作用

目的: 探讨雷帕霉素在大鼠局灶性脑缺血再灌注后24 h给药对脑损伤的保护作用。方法: 104只Sprague Dawley大鼠随机分为手术对照组、模型对照组、建模后6 h雷帕霉素给药组(6 h给药组)和建模后24 h雷帕霉素给药组(24 h给药组)。采用Longa法建立大鼠大脑中动脉缺血再灌注模型。采用神经功能损伤程度评分(NSS)对大鼠进行神经功能评分;氯化三苯基四氮唑(TTC)染色法检测各组大鼠脑梗死体积;Fluoro-Jade B(FJB)染色法检测大鼠脑组织神经元凋亡;蛋白质印迹法检测各组大鼠mTOR信号通路磷酸化S6蛋白表达。结果: 与手术对照组比较,模型对照组大鼠NSS升高,脑梗死体积增加,FJB阳性细胞增多,半暗带磷酸化S6蛋白表达量增加(均P < 0.01);与模型对照组比较,6 h和24 h给药组大鼠NSS均降低,脑梗死体积缩小,FJB阳性细胞减少,半暗带磷酸化S6蛋白表达量减少(均P < 0.05或P < 0.01),且24 h给药组各项指标变化与6 h给药组差异均无统计学意义(均P > 0.05)。结论: 缺血再灌注后24 h给予雷帕霉素对大鼠局灶性脑缺血再灌注所致脑损伤仍有保护作用。


关键词: 脑缺血/药物疗法,  再灌注损伤/药物疗法,  神经元,  细胞凋亡,  蛋白激酶类/生理学,  西罗莫司/药理学,  信号传导 
测试项目 评分
运动功能测试
  从尾部提起大鼠
    前肢屈曲 1
    后肢屈曲 1
    头部在30 s内上仰超过10° 1
  将大鼠放于平台上(正常0分,最多3分)
    正常爬行 0
    无法笔直爬行 1
    围绕偏瘫侧打转 2
    向偏瘫侧跌倒 3
  感觉测试
    浅感觉测试(视觉和触觉测试) 1
    本体感觉测试(深感觉,将患肢置于桌子边缘,动物无肢体收缩反应) 1
  横杆平衡木测试(正常0分,最多6分)
    平衡 0
    抓住横杆一侧 1
    抱住横杆,一肢体掉下 2
    抱住横杆,二肢体掉下或抱横杆旋转>60 s 3
    尽力平衡,但失败掉下(>40 s) 4
    尽力平衡,但失败掉下(>20 s) 5
    掉下(< 20 s) 6
  反射和异常动作测试
    耳廓反射(刺激耳道后摇头) 1
    角膜反射(棉花刺激角膜后眨眼) 1
    惊吓反射(听到突然声响后运动反射或尖叫) 1
    抽搐、肌阵挛、肌张力异常 1
Tab 1 Neurological severity score[15]
Fig 1 Rapamycin administered at different stages inhibited neurological injury in I/R rats (n=10)
Fig 2 Rapamycin administered at different stages reduced cerebral infarction volume in I/R rats
Fig 3 Rapamycin administered at different stages reduced neuronal apoptosis in I/R rats
Fig 4 Phosphorylation of S6 in I/R rats (n=6)
[1]   GAO H J , LIU P F , LI P W et al. Ligustrazine monomer against cerebral ischemia/reperfusion injury[J]. Neural Regen Res, 2015, 10 (5): 832- 840
doi: 10.4103/1673-5374.156991
[2]   PAN Y, CAI X, HUO X, et al. Cost-effectiveness of mechanical thrombectomy within 6 hours of acute ischaemic stroke in China[J/OL]. BMJ Open, 2018, 8(2): e018951.
[3]   CHONG Z Z , YAO Q Q , LI H H . The rationale of targeting mammalian target of rapamycin for ischemic stroke[J]. Cell Signal, 2013, 25 (7): 1598- 1607
doi: 10.1016/j.cellsig.2013.03.017
[4]   HACKE W , DONNAN G , FIESCHI C et al. Association of outcome with early stroke treatment:pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials[J]. Lancet, 2004, 363 (9411): 768- 774
doi: 10.1016/S0140-6736(04)15692-4
[5]   CHOI J H , PILE-SPELLMAN J . Reperfusion changes after stroke and practical approaches for neuroprotection[J]. Neuroimaging Clin N Am, 2018, 28 (4): 663- 682
doi: 10.1016/j.nic.2018.06.008
[6]   NARNE P , PANDEY V , PHANITHI P B . Role of nitric oxide and hydrogen sulfide in ischemic stroke and the emergent epigenetic underpinnings[J]. Mol Neurobiol, 2018,
[7]   HOU Y , WANG K , WAN W et al. Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats[J]. Genes Dis, 2018, 5 (3): 245- 255
doi: 10.1016/j.gendis.2018.06.001
[8]   SHI G D , OUYANG Y P , SHI J G et al. PTEN deletion prevents ischemic brain injury by activating the mTOR signaling pathway[J]. Biochem Biophys Res Commun, 2011, 404 (4): 941- 945
doi: 10.1016/j.bbrc.2010.12.085
[9]   MAIESE K . Cutting through the complexities of mTOR for the treatment of stroke[J]. Curr Neurovasc Res, 2014, 11 (2): 177- 186
doi: 10.2174/1567202611666140408104831
[10]   FLETCHER L, EVANS T M, WATTS L T, et al. Rapamycin treatment improves neuron viability in an in vitro model of stroke[J/OL]. PLoS One, 2013, 8(7): e68281.
[11]   URBANEK T , KUCZMIK W , BASTA-KAIM A et al. Rapamycin induces of protective autophagy in vascular endothelial cells exposed to oxygen-glucose deprivation[J]. Brain Res, 2014, 1553:1- 11
doi: 10.1016/j.brainres.2014.01.017
[12]   张斌斌, 吴美玲, 刘露娜 et al. 抑制哺乳动物雷帕霉素靶蛋白信号通路对慢性脑缺血小鼠认知功能的改善和机制[J]. 浙江大学学报(医学版), 2017, 46 (4): 405- 411
ZHANG Binbin , WU Meiling , LIU Luna et al. Inhibiting mammalian target of rapamycin signaling pathway improves cognitive function in mice with chronic cerebral ischemia[J]. Journal of Zhejiang University(Medical Sciences), 2017, 46 (4): 405- 411
[13]   WU M , ZHANG H , KAI J et al. Rapamycin prevents cerebral stroke by modulating apoptosis and autophagy in penumbra in rats[J]. Ann Clin Transl Neurol, 2018, 5 (2): 138- 146
[14]   LONGA E Z , WEINSTEIN P R , CARLSON S et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20 (1): 84- 91
doi: 10.1161/01.STR.20.1.84
[15]   CHEN J , SANBERG P R , LI Y et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats[J]. Stroke, 2001, 32 (11): 2682- 2688
doi: 10.1161/hs1101.098367
[16]   WANG T, LI Y, WANG Y, et al. Lycium barbarum polysaccharide prevents focal cerebral ischemic injury by inhibiting neuronal apoptosis in mice[J/OL]. PLoS One, 2014, 9(3): e90780.
[17]   冯春燕, 樊小农, 张春红 et al. 氯化三苯四氮唑染色后梗死灶定量分析方法[J]. 生物工程学杂志, 2009, 26 (6): 1363- 1366
FENG Chunyan , FAN Xiaonong , ZHANG Chunhong et al. On the quantitative analysis of focal ischemic cerebral infarction by TTC staining[J]. Journal of Biomedical Engineering, 2009, 26 (6): 1363- 1366
[18]   ASHWAL S , TONE B , TIAN H R et al. Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion[J]. Stroke, 1998, 29 (5): 1037- 1046
doi: 10.1161/01.STR.29.5.1037
[19]   孙明, 赵育梅, 徐超 . 局灶性脑缺血再灌注损伤核心区及半暗带的组织学定位[J]. 中华神经外科杂志, 2003, 19 (4): 259- 262
SUN Ming , ZHAO Yumei , XU Chao . Histological location of core and penumbra of cortex and striatum underwent focal cerebral ischemia and reperfusion[J]. Chinese Journal of Neurosurgery, 2003, 19 (4): 259- 262
doi: 10.3760/j.issn:1001-2346.2003.04.005
[20]   刘震乾, 张清秀, 魏秀娥 et al. 小鼠脑缺血再灌注模型的优化及其效果评价[J]. 东南大学学报(医学版), 2017, 36 (3): 328- 332
LIU Zhenqian , ZHANG Qingxiu , WEI Xiu'er et al. Optimization and evaluation of cerebral ischemia reperfusion model in mice[J]. Journal of Southeast University(Medical Science Edition), 2017, 36 (3): 328- 332
doi: 10.3969/j.issn.1671-6264.2017.03.004
[21]   WALKER C L, WALKER M J, LIU N K, et al. Systemic bisperoxovanadium activates Akt/mTOR, reduces autophagy, and enhances recovery following cervical spinal cord injury[J/OL]. PLoS One, 2012, 7(1): e30012.
[22]   KOH S H , LO E H . The role of the PI3K pathway in the regeneration of the damaged brain by neural stem cells after cerebral infarction[J]. J Clin Neurol, 2015, 11 (4): 297- 304
doi: 10.3988/jcn.2015.11.4.297
[23]   KOROTCHKINA L G , LEONTIEVA O V , BUKREEVA E I et al. The choice between p53-induced senescence and quiescence is determined in part by the mTOR pathway[J]. Aging(Albany NY), 2010, 2 (6): 344- 352
[24]   KOH P O , CHO J H , WON C K et al. Estradiol attenuates the focal cerebral ischemic injury through mTOR/p70S6 kinase signaling pathway[J]. Neurosci Lett, 2008, 436 (1): 62- 66
doi: 10.1016/j.neulet.2008.02.061
[25]   HARA A , NIWA M , YOSHIMI N et al. Apoptotic cell death in vulnerable subpopulation of cerebellar granule cells[J]. Acta Neuropathol, 1997, 94 (5): 517- 518
doi: 10.1007/s004010050744
[26]   YIN L , YE S , CHEN Z et al. Rapamycin preconditioning attenuates transient focal cerebral ischemia/reperfusion injury in mice[J]. Int J Neurosci, 2012, 122 (12): 748- 756
doi: 10.3109/00207454.2012.721827
[27]   CHAUHAN A , SHARMA U , JAGANNATHAN N R et al. Rapamycin ameliorates brain metabolites alterations after transient focal ischemia in rats[J]. Eur J Pharmacol, 2015, 757:28- 33
doi: 10.1016/j.ejphar.2015.03.006
[1] WU You,LIANG Shunli,XU Bin,ZHANG Rongbo,XU Linsheng. Protective effect of curcumin on dopamine neurons in Parkinson's disease and its mechanism[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 480-486.
[2] ZHU Feng,FAN Miao,XU Ziwei,CAI Yiting,CHEN Yizhen,YU Shuang,ZENG Linghui. Neuroprotective effect of rapamycin against Parkinson's disease in mice[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 465-472.
[3] LIN Kana,LIN Meili,GU Yingfen,ZHANG Shunguo,HUANG Shiying. G protein-coupled receptor 17 is involved in CoCl2-induced hypoxic injury in RGC-5 cells[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 487-492.
[4] LIN Meina,XU Ruiyuan,ZHANG Tao,ZHANG Lin,MEI Xuqiao. Expression of c-FLIP in peripheral blood mononuclear cells of patients with rheumatoid arthritis and its relation with extrinsic apoptotic pathway[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 381-388.
[5] QIAN Bo,ZHANG Yanling,MO Xuming. Research progress on transcription factors and signal pathways involved in congenital esophageal atresia[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 239-243.
[6] ZHANG Xiaoyan,KANG Lijun. Molecular and cell biological mechanism of olfactory adaptation in Caenorhabditis elegans[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 307-312.
[7] PAN Zongfu,FANG Qilu,ZHANG Yiwen,LI Li,HUANG Ping. Identification of key pathways and drug repurposing for anaplastic thyroid carcinoma by integrated bioinformatics analysis[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 187-193.
[8] WANG Hao,GUO Honggang,LOU Qi,SHI Qiaojuan. Effects of cysteinyl leukotrienes receptor antagonists on chronic brain injury after global cerebral ischemia/reperfusion[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 19-26.
[9] DING Jingjing,LU Yunbi. Research progress on receptor interacting proteins in inflammation[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 89-96.
[10] LIU Tingting,WANG Lingxiao,YANG Xiaohui,YAO Zhiqing,CAI Huizhen. TLR/NF-κB independent signaling pathway in TNF-α suppression of diabetic MyD88-knockout mice after Lycium barbarum polysaccharides administration[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 35-40.
[11] WEI Zhenlong,SHI Wengui,CHEN Keming,ZHOU Jian,WANG Minggang. Icaritin promotes maturation and mineralization of mouse osteoblast MC3T3-E1 cells through CXCR4/SDF-1 signal pathway[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 571-577.
[12] TIAN Hua, CHEN Yang, ZHAO Jiangang, LIU Daren, LIANG Gang, GONG Weihua, CHEN Li, WU Yulian. Effects of siRNAs targeting CD97 immune epitopes on biological behavior in breast cancer cell line MDA-MB231[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 341-348.
[13] ZHANG Binbin, WU Meiling, LIU Luna, ZHU Yangbin, KAI Jiejing, ZENG Linghui. Inhibiting mammalian target of rapamycin signaling pathway improves cognitive function in mice with chronic cerebral ischemia[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 405-412.
[14] HE Yujie,PAN Jianping. Progress on mechanisms for pathogensto evade NOD-like receptor and Toll-like receptor signaling pathways[J]. J Zhejiang Univ (Med Sci), 2017, 46(2): 218-224.
[15] CHEN Liying,WANG Yi,CHEN Zhong. Temporal lobe epilepsy and adult hippocampal neurogenesis[J]. J Zhejiang Univ (Med Sci), 2017, 46(1): 22-29.