Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (4): 426-434    DOI: 10.3785/j.issn.1008-9292.2018.08.16
    
Research progress on nonspecific immune microenvironment in breast cancer
XU Zhili1,2(),CUI Yiyi1,2,LI Yan1,2,GUO Yong1,2,*()
1. First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
2. Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
Download: HTML( 7 )   PDF(1008KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The immune microenvironment plays an important role in the occurrence and development of breast cancer. The infiltrating immune cells and the produced inflammatory cytokines in the tumor microenvironment regulate the growth, proliferation and metastasis of breast cancer. In this article, the roles and related mechanisms of nonspecific immune microenvironment in breast cancer are summarized, focusing on the natural killer cells, dendritic cells, myeloid derived suppressor cells, tumor associated macrophages, interleukins, chemokines, tumor necrosis factor-α, transforming growth factor-β and so on.



Key wordsBreast neoplasms      Immunity, natural      Review     
Received: 20 May 2018      Published: 04 December 2018
CLC:  R737.9  
  R392  
Corresponding Authors: GUO Yong     E-mail: 626867320@qq.com;guoyong1047@163.com
Cite this article:

XU Zhili,CUI Yiyi,LI Yan,GUO Yong. Research progress on nonspecific immune microenvironment in breast cancer. J Zhejiang Univ (Med Sci), 2018, 47(4): 426-434.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2018.08.16     OR     http://www.zjujournals.com/med/Y2018/V47/I4/426


乳腺癌非特异性免疫微环境的研究进展

乳腺癌肿瘤免疫微环境,即浸润到乳腺肿瘤内部的免疫细胞及所分泌的活性介质等与肿瘤细胞共同构成的局部内环境,对肿瘤的生长、增殖及转移有着重要调控作用。除了由获得性免疫反应T淋巴细胞介导特异性抗肿瘤免疫反应的肿瘤杀伤效应,由NK细胞、树突状细胞、髓源性抑制细胞、肿瘤相关巨噬细胞、IL、趋化因子、TNF-α和TGF-β等非特异性免疫细胞及分子所介导的非特异性免疫反应作为抗肿瘤免疫的第一道防线,在清除肿瘤细胞、抑制其增殖具有重要作用。本文就近年来乳腺癌肿瘤微环境中参与非特异性免疫效应的相关机制研究作简要综述。


关键词: 乳腺肿瘤,  免疫, 天然,  综述 
Fig 1 Interaction of non-specific immune cells and related factors in breast cancer immune microenvironment
[1]   TORRE L A , BRAY F , SIEGEL R L et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65 (2): 87- 108
doi: 10.3322/caac.21262
[2]   GOLDHIRSCH A , WINER E P , COATES A S et al. Personalizing the treatment of women with early breast cancer:highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013[J]. Ann Oncol, 2013, 24 (9): 2206- 2223
doi: 10.1093/annonc/mdt303
[3]   KEES T , EGEBLAD M . Innate immune cells in breast cancer-from villains to heroes?[J]. J Mammary Gland Biol Neoplasia, 2011, 16 (3): 189- 203
doi: 10.1007/s10911-011-9224-2
[4]   VESELY M D , KERSHAW M H , SCHREIBER R D et al. Natural innate and adaptive immunity to cancer[J]. Annu Rev Immunol, 2011, 29 235- 271
doi: 10.1146/annurev-immunol-031210-101324
[5]   SCHREIBER R D , OLD L J , SMYTHM J . Cancer immunoediting:integrating immunity's roles in cancer suppression and promotion[J]. Science, 2011, 331 (6024): 1565- 1570
doi: 10.1126/science.1203486
[6]   DUNN G P , BRUCE A T , IKEDA H et al. Cancer immunoediting:from immunosurveillance to tumor escape[J]. Nat Immunol, 2002, 3 (11): 991- 998
doi: 10.1038/ni1102-991
[7]   SOYSAL S D , TZANKOV A , MUENST S E . Role of the tumor microenvironment in breast cancer[J]. Pathobiology, 2015, 82 (3-4): 142- 152
doi: 10.1159/000430499
[8]   MOTZ G T , COUKOS G . Deciphering and reversing tumor immune suppression[J]. Immunity, 2013, 39 (1): 61- 73
doi: 10.1016/j.immuni.2013.07.005
[9]   SPRANGER S , SIVAN A , CORRALES L et al. Tumor and host factors controlling antitumor immunity and efficacy of cancer immunotherapy[J]. Adv Immunol, 2016, 130 75- 93
doi: 10.1016/bs.ai.2015.12.003
[10]   DENARDO D G , COUSSENS L M . Inflammation and breast cancer. Balancing immune response:crosstalk between adaptive and innate immune cells during breast cancer progression[J]. Breast Cancer Res, 2007, 9 (4): 212
[11]   GEBREMESKEL S , LOBERT L , TANNER K et al. Natural killer T-cell immunotherapy in combination with chemotherapy-induced immunogenic cell death targets metastatic breast cancer[J]. Cancer Immunol Res, 2017, 5 (12): 1086- 1097
doi: 10.1158/2326-6066.CIR-17-0229
[12]   MURARO E , COMARO E , TALAMINI R et al. Improved natural killer cell activity and retained anti-tumor CD8(+) T cell responses contribute to the induction of a pathological complete response in HER2-positive breast cancer patients undergoing neoadjuvant chemotherapy[J]. J Transl Med, 2015, 13 204
doi: 10.1186/s12967-015-0567-0
[13]   TALLERICO R, CONTI L, LANZARDO S, et al. NK cells control breast cancer and related cancer stem cell hematological spread[J/OL]. Oncoimmunology, 2017, 6(3): e1284718.
[14]   MAMESSIER E , PRADEL L C , THIBULT M L et al. Peripheral blood NK cells from breast cancer patients are tumor-induced composite subsets[J]. J Immunol, 2013, 190 (5): 2424- 2436
doi: 10.4049/jimmunol.1200140
[15]   RATHORE A S , GOEL M M , MAKKER A et al. Is the tumor infiltrating natural killer cell (NK-TILs) count in infiltrating ductal carcinoma of breast prognostically significant?[J]. Asian Pac J Cancer Prev, 2014, 15 (8): 3757- 3761
doi: 10.7314/APJCP.2014.15.8.3757
[16]   GARDNER A , RUFFELL B . Dendritic cells and cancer immunity[J]. Trends Immunol, 2016, 37 (12): 855- 865
doi: 10.1016/j.it.2016.09.006
[17]   SALMON H , IDOYAGA J , RAHMAN A et al. Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition[J]. Immunity, 2016, 44 (4): 924- 938
doi: 10.1016/j.immuni.2016.03.012
[18]   BERGENFELZ C, LARSSON A M, VON S K, et al. Systemic monocytic-MDSCs are generated from monocytes and correlate with disease progression in breast cancer patients[J/OL]. PLoS One, 2015, 10(5): e0127028.
[19]   MONTERO A J , DIAZ-MONTERO C M , DEUTSCH Y E et al. Phase 2 study of neoadjuvant treatment with NOV-002 in combination with doxorubicin and cyclophosphamide followed by docetaxel in patients with HER-2 negative clinical stage Ⅱ-Ⅲc breast cancer[J]. Breast Cancer Res Treat, 2012, 132 (1): 215- 223
doi: 10.1007/s10549-011-1889-0
[20]   SOLITO S , FALISI E , DIAZ-MONTERO C M et al. A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells[J]. Blood, 2011, 118 (8): 2254- 2265
doi: 10.1182/blood-2010-12-325753
[21]   BRUCHARD M , MIGNOT G , DERANGōRE V et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth[J]. Nat Med, 2013, 19 (1): 57- 64
doi: 10.1038/nm.2999
[22]   SHOU D , WEN L , SONG Z et al. Suppressive role of myeloid-derived suppressor cells (MDSCs) in the microenvironment of breast cancer and targeted immunotherapies[J]. Oncotarget, 2016, 7 (39): 64505- 64511
[23]   LECHNER M G , MEGIEL C , RUSSELL S M et al. Functional characterization of human CD33+ and Cd11b+ myeloid-derived suppressor cell subsets induced from peripheral blood mononuclear cells co-cultured with a diverse set of human tumor cell lines[J]. J Transl Med, 2011, 9 90
doi: 10.1186/1479-5876-9-90
[24]   PARKER K H , BEURY D W , OSTRAND-ROSENBERG S . Myeloid-derived suppressor cells:critical cells driving immune suppression in the tumor microenvironment[J]. Adv Cancer Res, 2015, 128 95- 139
[25]   UMANSKY V , BLATTNER C , GEBHARDT C et al. The role of myeloid-derived suppressor cells (MDSC) in cancer progression[J]. Vaccines(Basel), 2016, 4 (4): pii:E36
[26]   HUANG B , PAN PY , LI Q et al. Gr-1+ CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host[J]. Cancer Res, 2006, 66 (2): 1123- 1131
[27]   MAO Y , SARHAN D , STEVEN A et al. Inhibition of tumor-derived prostaglandin-e2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activity[J]. Clin Cancer Res, 2014, 20 (15): 4096- 4106
doi: 10.1158/1078-0432.CCR-14-0635
[28]   NOMAN M Z , DESANTIS G , JANJI B et al. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation[J]. J Exp Med, 2014, 211 (5): 781- 790
doi: 10.1084/jem.20131916
[29]   WEICHAND B , POPP R , DZIUMBLA S et al. S1PR1 on tumor-associated macrophages promotes lymphangiogenesis and metastasis via NLRP3/IL-1β[J]. J Exp Med, 2017, 214 (9): 2695- 2713
doi: 10.1084/jem.20160392
[30]   GAN L , QIU Z , HUANG J et al. Cyclooxygenase-2 in tumor-associated macrophages promotes metastatic potential of breast cancer cells through Akt pathway[J]. Int J Biol Sci, 2016, 12 (12): 1533- 1543
doi: 10.7150/ijbs.15943
[31]   LEWIS J S , LANDERS R J , UNDERWOOD J C et al. Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas[J]. J Pathol, 2000, 192 (2): 150- 158
[32]   SANTONI M , ROMAGNOLI E , SALADINO T et al. Triple negative breast cancer:key role of tumor-associated macrophages in regulating the activity of anti-PD-1/PD-L1 agents[J]. Biochim Biophys Acta Rev Cancer, 2018, 1869 (1): 78- 84
doi: 10.1016/j.bbcan.2017.10.007
[33]   KODUMUDI K N , WOAN K , GILVARY D L et al. A novel chemoimmunomodulating property of docetaxel:suppression of myeloid-derived suppressor cells in tumor bearers[J]. Clin Cancer Res, 2010, 16 (18): 4583- 4594
doi: 10.1158/1078-0432.CCR-10-0733
[34]   YANG C , HE L , HE P et al. Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway[J]. Med Oncol, 2015, 32 (2): 352
[35]   LANDSKRON G , DE LA FUENTE M , THUWAJIT P et al. Chronic inflammation and cytokines in the tumor microenvironment[J]. J Immunol Res, 2014, 2014 149185
[36]   MA Y , REN Y , DAI Z J et al. IL-6, IL-8 and TNF-α levels correlate with disease stage in breast cancer patients[J]. Adv Clin Exp Med, 2017, 26 (3): 421- 426
doi: 10.17219/acem/62120
[37]   KARCZEWSKA A , NAWROCKI S , BREBOROWICZ D et al. Expression of interleukin-6, interleukin-6 receptor, and glycoprotein 130 correlates with good prognoses for patients with breast carcinoma[J]. Cancer, 2000, 88 (9): 2061- 2071
doi: 10.1002/(ISSN)1097-0142
[38]   DETHLEFSEN C , H?JFELDT G , HOJMAN P . The role of intratumoral and systemic IL-6 in breast cancer[J]. Breast Cancer Res Treat, 2013, 138 (3): 657- 664
doi: 10.1007/s10549-013-2488-z
[39]   YU H , KORTYLEWSKI M , PARDOLL D . Crosstalk between cancer and immune cells:role of STAT3 in the tumour microenvironment[J]. Nat Rev Immunol, 2007, 7 (1): 41- 51
doi: 10.1038/nri1995
[40]   KOZ?OWSKI L , ZAKRZEWSKA I , TOKAJUK P et al. Concentration of interleukin-6(IL-6), interleukin-8(IL-8) and interleukin-10(IL-10) in blood serum of breast cancer patients[J]. Rocz Akad Med Bialymst, 2003, 48 82- 84
[41]   LEE E B , KIM A , KANG K et al. NDRG2-mediated modulation of SOCS3 and STAT3 activity inhibits IL-10 production[J]. Immune Netw, 2010, 10 (6): 219- 229
doi: 10.4110/in.2010.10.6.219
[42]   RUFFELL B , CHANG-STRACHAN D , CHAN V et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells[J]. Cancer Cell, 2014, 26 (5): 623- 637
doi: 10.1016/j.ccell.2014.09.006
[43]   REN L , WANG X , DONG Z et al. Bone metastasis from breast cancer involves elevated IL-11 expression and the gp130/STAT3 pathway[J]. Med Oncol, 2013, 30 (3): 634
doi: 10.1007/s12032-013-0634-4
[44]   JOHNSTONE C N , CHAND A , PUTOCZKI T L et al. Emerging roles for IL-11 signaling in cancer development and progression:focus on breast cancer[J]. Cytokine Growth Factor Rev, 2015, 26 (5): 489- 498
doi: 10.1016/j.cytogfr.2015.07.015
[45]   ALLEGREZZA M J , RUTKOWSKI M R , STEPHEN T L et al. IL15 agonists overcome the immunosuppressive effects of MEK inhibitors[J]. Cancer Res, 2016, 76 (9): 2561- 2572
doi: 10.1158/0008-5472.CAN-15-2808
[46]   ROBERTI M P , ROCCA Y S , AMAT M et al. IL-2-or IL-15-activated NK cells enhance cetuximab-mediated activity against triple-negative breast cancer in xenografts and in breast cancer patients[J]. Breast Cancer Res Treat, 2012, 136 (3): 659- 671
doi: 10.1007/s10549-012-2287-y
[47]   GILLGRASS A , GILL N , BABIAN A et al. The absence or overexpression of IL-15 drastically alters breast cancer metastasis via effects on NK cells, CD4 T cells, and macrophages[J]. J Immunol, 2014, 193 (12): 6184- 6191
doi: 10.4049/jimmunol.1303175
[48]   SVENSSON S , ABRAHAMSSON A , RODRIGUEZG V et al. CCL2 and CCL5 are novel therapeutic targets for estrogen-dependent breast cancer[J]. Clin Cancer Res, 2015, 21 (16): 3794- 3805
doi: 10.1158/1078-0432.CCR-15-0204
[49]   SUN X , GLYNN D J , HODSON L J et al. CCL2-driven inflammation increases mammary gland stromal density and cancer susceptibility in a transgenic mouse model[J]. Breast Cancer Res, 2017, 19 (1): 4
[50]   MANDAL P K , BISWAS S , MANDAL G et al. CCL2 conditionally determines CCL22-dependent Th2-accumulation during TGF-β-induced breast cancer progression[J]. Immunobiology, 2018, 223 (2): 151- 161
doi: 10.1016/j.imbio.2017.10.031
[51]   WANG J , ZHUANG Z G , XU S F et al. Expression of CCL2 is significantly different in five breast cancer genotypes and predicts patient outcome[J]. Int J Clin Exp Med, 2015, 8 (9): 15684- 15691
[52]   GAO D , RAHBAR R , FISH E N . CCL5 activation of CCR5 regulates cell metabolism to enhance proliferation of breast cancer cells[J]. Open Biol, 2016, 6 (6): pii:160122
doi: 10.1098/rsob.160122
[53]   ZHANG Q , QIN J , ZHONG L et al. CCL5-mediated Th2 immune polarization promotes metastasis in luminal breast cancer[J]. Cancer Res, 2015, 75 (20): 4312- 4321
doi: 10.1158/0008-5472.CAN-14-3590
[54]   LIN L , CHEN Y S , YAO Y D et al. CCL18 from tumor-associated macrophages promotes angiogenesis in breast cancer[J]. Oncotarget, 2015, 6 (33): 34758- 34773
[55]   SUN J H , FAN N , ZHANG Y . Correlation between serum level of chemokine (C-C motif) ligand 18 and poor prognosis in breast cancer[J]. Genet Mol Res, 2016, 15 (3):
[56]   LEE S K , PARK K K , KIM H J et al. Human antigen R-regulated CCL20 contributes to osteolytic breast cancer bone metastasis[J]. Sci Rep, 2017, 7 (1): 9610
doi: 10.1038/s41598-017-09040-4
[57]   ZHANG Z , SUN T , CHEN Y et al. CCL25/CCR9 signal promotes migration and invasion in hepatocellular and breast cancer cell lines[J]. DNA Cell Biol, 2016, 35 (7): 348- 357
doi: 10.1089/dna.2015.3104
[58]   ZOU A , LAMBERT D , YEH H et al. Elevated CXCL1 expression in breast cancer stroma predicts poor prognosis and is inversely associated with expression of TGF-β signaling proteins[J]. BMC Cancer, 2014, 14 781
doi: 10.1186/1471-2407-14-781
[59]   GU-TRANTIEN C , MIGLIORI E , BUISSERET L et al. CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer[J]. JCI Insight, 2017, 2 (11): pii:91487
doi: 10.1172/jci.insight.91487
[60]   BEDOGNETTI D, WANG E, MARINCOLA F M. Meta-analysis and metagenes: CXCL-13-driven signature as a robust marker of intratumoral immune response and predictor of breast cancer chemotherapeutic outcome[J/OL]. Oncoimmunology, 2014, 3: e28727.
[61]   SHEN W H , ZHOU J H , BROUSSARD S R et al. Proinflammatory cytokines block growth of breast cancer cells by impairing signals from a growth factor receptor[J]. Cancer Res, 2002, 62 (16): 4746- 4756
[62]   MUENST S , L?UBLI H , SOYSAL S D et al. The immune system and cancer evasion strategies:therapeutic concepts[J]. J Intern Med, 2016, 279 (6): 541- 562
doi: 10.1111/joim.2016.279.issue-6
[63]   ROUBERT A , GREGORY K , LI Y et al. The influence of tumor necrosis factor-α on the tumorigenic Wnt-signaling pathway in human mammary tissue from obese women[J]. Oncotarget, 2017, 8 (22): 36127- 36136
[64]   EFTEKHARI R , ESMAEILI R , MIRZAEI R et al. Study of the tumor microenvironment during breast cancer progression[J]. Cancer Cell Int, 2017, 17 123
doi: 10.1186/s12935-017-0492-9
[65]   KAJDANIUK D , MAREK B , BORGIEL-MAREK H et al. Transforming growth factor β1(TGFβ1) in physiology and pathology[J]. Endokrynol Pol, 2013, 64 (5): 384- 396
doi: 10.5603/EP.2013.0022
[66]   MEULMEESTER E , TEN DIJKE P . The dynamic roles of TGF-β in cancer[J]. J Pathol, 2011, 223 (2): 205- 218
[67]   FANG Y , CHEN Y , YU L et al. Inhibition of breast cancer metastases by a novel inhibitor of TGF-β receptor 1[J]. J Natl Cancer Inst, 2013, 105 (1): 47- 58
doi: 10.1093/jnci/djs485
[68]   LEE J C , LEE K M , KIM D W et al. Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients[J]. J Immunol, 2004, 172 (12): 7335- 7340
doi: 10.4049/jimmunol.172.12.7335
[1] WANG Xiaoling, OUYANG Xumei, SUN Xiaoyi. Application of mesenchymal stem cells in antineoplastic drugs delivery for tumor-targeted therapy[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 525-533.
[2] HU Caiqin, ZHU Biao. Progress on pathogenesis of progressive multifocal leukoence-phalopathy[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 534-540.
[3] SHI Ting, YE Xiujin. Roles of CCAAT enhancer binding protein α in acute myeloblastic leukemia[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 552-557.
[4] YE Jianyu, SUN Ziyu, HU Weiwei. Roles of astrocytes in cerebral infarction and related therapeutic strategies[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 493-498.
[5] LI Gaopeng, HE Jia, WANG Qingqing. Progress on cancer associated fibroblasts in tumor immunoregulation[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 558-563.
[6] CHEN Shujun,SHAO Guoliang,SHAO Feng,ZHANG Minming. Diffusion-weighted imaging texture features in differentiation of malignant from benign nonpalpable breast lesions for patients with microcalcifications-only in mammography[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 400-404.
[7] HE Jiayi,ZHANG Xinmei. Research progress on oxidative stress in pathogenesis of endometriosis[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 419-425.
[8] WANG Xingxing,WANG Panpan,YANG Xuyan. Research progress on systemic lupus erythematosus overlapping organ-specific autoimmune diseases[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 435-440.
[9] ZHANG Lifeng,ZHANG Xinmei. Research progress on roles of vitamin D in endometriosis[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 413-418.
[10] QIAN Bo,ZHANG Yanling,MO Xuming. Research progress on transcription factors and signal pathways involved in congenital esophageal atresia[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 239-243.
[11] ZHANG Xiaoyan,KANG Lijun. Molecular and cell biological mechanism of olfactory adaptation in Caenorhabditis elegans[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 307-312.
[12] TIAN Guangfeng,GAO Hui,HU Shasha,SHU Qiang. Research progress on genetic and epigenetic mechanisms in congenital heart disease[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 227-238.
[13] LI Fushan,FANG Ran,RAO Lin,MENG Feilong,ZHAO Xiaoli. Research progress on exosomes in diagnosis and treatment of cardiovascular diseases[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 320-326.
[14] CHEN Ting,ZHAO Zhengyan,JIANG Pingping,SHU Qiang. Research progress on phenotype and genotype of hyperphenylalaninemia[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 219-226.
[15] WANG Wei,LIU Zhen,LIU Jun,ZHEN Ping,LI Xusheng,SONG Mingjia. Choice of total knee arthroplasty: posterior cruciate ligament preserved or not[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 313-319.