Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (4): 351-356    DOI: 10.3785/j.issn.1008-9292.2018.08.04
    
Establishment of a prognostic model for preterm delivery in women after cervical conization
LOU Yelin1,2(),ZHOU Yimin1,LU Hong1,LYU Weiguo3,*()
1. Department of Ultrasonography, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
2. Department of Ultrasonography, Jinhua Hospital of Zhejiang University, Jinhua 321000, Zhejiang Province, China
3. Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
Download: HTML( 6 )   PDF(978KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To establish a prognostic model for preterm birth in women after cervical conization, and to evaluate its effectiveness. Methods: Seventy three women after cervical conization in Women's Hospital of Zhejiang University were included for this retrospective study. The influencing factors of preterm delivery were analyzed by Logistic regression analysis and a prognostic model was created. Receiver operating characteristic (ROC) curve was used for evaluation of the predictive ability of the model. Forty five women who underwent cervical conization were included for testing the validity of the model. Results: For women after cervical conization, mother's age (OR=1.20, 95%CI:1.01-1.43, P < 0.05) and cervical length during middle pregnancy (OR=0.06, 95%CI:0.01-0.21, P < 0.01) were independent predictors for preterm birth. The regression model was Logit (P)=1.408-2.903×cervical length+0.186×age. The areas under the ROC curve (AUC) of the training dataset was 0.93 (95%CI:0.87-0.99). The sensitivity, specificity, Youden index, positive predictive value (PPV), negative predictive value (NPV) and accuracy with the cutoff value of -1.512 were 91.7%, 81.5%, 0.732, 68.8%, 95.7% and 84.5% respectively. The AUC of the testing dataset was 0.94 (95%CI:0.86-1.00). The sensitivity, specificity, Youden index, PPV, NPV and accuracy with the cutoff value of -0.099 were 92.9%, 90.3%, 0.832, 81.3%, 96.5% and 91.1%, respectively. Conclusion: The model based on the age and cervical length during middle pregnancy can effectively predict preterm delivery in pregnant women after cervical conization.



Key wordsCervical intraepithelial neoplasia/surgery      Uterine cervical neoplasms/surgery      Hysterectomy      Postoperative period      Premature birth      Forecasting      Models, theoretical      Retrospective studies     
Received: 05 July 2018      Published: 04 December 2018
CLC:  R711.74  
Corresponding Authors: LYU Weiguo     E-mail: snowflack100@163.com;lbwg@zju.edu.cn
Cite this article:

LOU Yelin,ZHOU Yimin,LU Hong,LYU Weiguo. Establishment of a prognostic model for preterm delivery in women after cervical conization. J Zhejiang Univ (Med Sci), 2018, 47(4): 351-356.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2018.08.04     OR     http://www.zjujournals.com/med/Y2018/V47/I4/351


宫颈锥切术后孕妇早产预测模型的建立

目的: 建立宫颈锥切术后孕妇发生早产的预测模型,并对模型的临床价值进行初步评估。方法: 回顾性分析浙江大学医学院附属妇产科医院有宫颈锥切术史的73名孕妇妊娠病历资料,以此为训练数据集采用Logistic回归分析筛选早产的影响因素并建立预测模型。选择宫颈锥切术后45名孕妇作为验证数据集,采用ROC曲线进行宫颈锥切术后孕妇早产预测模型的临床价值评估。结果: 对于宫颈锥切术后孕妇,年龄(OR=1.20,95% CI:1.01~1.43,P < 0.05)和孕中期子宫颈长度(OR=0.06,95% CI:0.01~0.21,P < 0.01)是早产的独立预测因素。通过Logistic回归分析建立回归模型Logit(P)=1.408-2.903×孕中期子宫颈长度+0.186×孕妇年龄。训练数据集使用构建的模型预测早产的AUC值为0.93(95%CI:0.87~0.99),该模型预测早产的最佳阈值为-1.512,敏感度、特异度、约登指数、阳性预测值、阴性预测值、准确率分别为91.7%、81.5%、0.732、68.8%、95.7%、84.5%;测试数据集使用构建的模型预测早产的AUC值为0.94(95%CI:0.86~1.00),当最佳阈值为-0.099时,模型预测早产的敏感度、特异度、约登指数、阳性预测值、阴性预测值、准确率分别为92.9%、90.3%、0.832、81.3%、96.5%、91.1%。结论: 以宫颈锥切术后孕妇的年龄和孕中期子宫颈长度建立的早产预测模型可以较准确地预测早产的发生,值得临床进一步研究。


关键词: 宫颈上皮内瘤样病变/外科学,  宫颈肿瘤/外科学,  子宫切除术,  手术后期间,  早产,  预测,  模型, 理论,  回顾性研究 
[n(%)或M(Q1~Q3)]
变量 <37周分娩(n=30) ≥37周分娩(n=54) OR(95%CI) P
手术方法 环形电刀切除术 15(50.0) 38(70.4) 1
         冷刀锥切术 15(50.0) 16(29.6) 2.38(0.94~5.98) >0.05
子宫颈组织病理级别 CINⅠ 5(16.7) 21(38.9) 1
              CINⅡ 10(33.3) 14(25.9) 2.86(0.80~10.20) >0.05
              CINⅢ 15(50.0) 19(35.2) 3.00(0.92~9.83) >0.05
孕妇年龄(岁) 37.0(30.0~39.8) 30(29.0~32.3) 1.18(1.05~1.32) <0.01
孕次 3(2~4) 2(1~3) 1.31(0.97~1.77) >0.05
产次 0(0~1) 0(0~0) 1.94(0.92~4.07) >0.05
孕前体质指数(kg/m2) 19.7(18.8~22.2) 20.5(19.1~22.3) 0.96(0.82~1.13) >0.05
辅助生殖次数 6(20.0) 4(7.4) 3.13(0.81~12.12) >0.05
孕期风险因素* 15(50.0) 27(50.0) 1.00(0.41~2.44) >0.05
孕中期子宫颈长度(mm) 2(1.8~2.7) 3.4(3.0~3.7) 0.05(0.01~0.17) < 0.01
“—”无相关数据;CIN:宫颈上皮内瘤变.*包括妊娠期糖尿病、妊娠期肝内胆汁淤积症、高血压、乙型肝炎病毒阳性和羊水偏少.
Tab 1 Univariate logistic regression analysis of related factors of preterm delivery after cervical conization
变量 OR值(95%CI) P 回归系数 标准误 χ2
孕妇年龄 1.20(1.01~1.43) <0.05 0.186 0.089 4.355
孕中期子宫颈长度 0.06(0.01~0.21) < 0.01 -2.903 0.690 17.687
Tab 2 Multivariate logistic regression analysis of related factors of preterm delivery after cervical conization
Fig 1 ROC curves of the risk of preterm delivery predicted by the established model
[1]   PINBORG A , ORTOFT G , LOFT A et al. Cervical conization doubles the risk of preterm and very preterm birth in assisted reproductive technology twin pregnancies[J]. Hum Reprod, 2015, 30 (1): 197- 204
doi: 10.1093/humrep/deu260
[2]   CONNER S N , FREY H A , CAHILL A G et al. Loop electrosurgical excision procedure and risk of preterm birth:a systematic review and meta-analysis[J]. Obstet Gynecol, 2014, 123 (4): 752- 761
doi: 10.1097/AOG.0000000000000174
[3]   KYRGIOU M , ATHANASIOU A , IEJ K et al. Obstetric outcomes after conservative treatment for cervical intraepithelial lesions and early invasive disease[J]. Cochrane Database Syst Rev, 2017, 11 CD012847
[4]   谢幸, 苟文丽 . 妇产科学[M]. 8版.北京: 人民卫生出版社, 2013: 58
XIE Xing , GOU Wenli . Obstetrics and gynecology[M]. 8th ed. Beijing: People's Health Publishing House, 2013: 58
[5]   READ C P , WORD R A , RUSCHEINSKY M A et al. Cervical remodeling during pregnancy and parturition:molecular characterization of the softening phase in mice[J]. Reproduction, 2007, 134 (2): 327- 340
doi: 10.1530/REP-07-0032
[6]   AKINS M L , LUBY-PHELPS K , BANK R A et al. Cervical softening during pregnancy:regulated changes in collagen cross-linking and composition of matricellular proteins in the mouse[J]. Biol Reprod, 2011, 84 (5): 1053- 1062
doi: 10.1095/biolreprod.110.089599
[7]   MCINTOSH J , FELTOVICH H , BERGHELLA V et al. The role of routine cervical length screening in selected high-and low-risk women for preterm birth prevention[J]. Am J Obstet Gynecol, 2016, 215 (3): B2- B7
doi: 10.1016/j.ajog.2016.04.027
[8]   KYRGIOU M , ATHANASIOU A , PARASKEVAIDI M et al. Adverse obstetric outcomes after local treatment for cervical preinvasive and early invasive disease according to cone depth:systematic review and meta-analysis[J]. BMJ, 2016, 354 i3633
[9]   LIU X , ZHANG W . Effect of maternal age on pregnancy:a retrospective cohort study[J]. Chin Med J(Engl), 2014, 127 (12): 2241- 2246
[10]   PILS S , EPPEL W , SEEMANN R et al. Sequential cervical length screening in pregnancies after loop excision of the transformation zone conisation:a retrospective analysis[J]. BJOG, 2014, 121 (4): 457- 462
[11]   HIMES K P , SIMHAN H N . Time from cervical conization to pregnancy and preterm birth[J]. Obstet Gynecol, 2007, 109 (2 Pt 1): 314- 319
[12]   荫士安, 王欣 . 关注高龄妊娠妇女的营养与健康[J]. 中华预防医学杂志, 2018, 52 (1): 9- 13
YIN Shian , WANG Xin . Pay attention to the nutrition and health of pregnancy women with advanced age[J]. Chinese Journal of Preventive Medicine, 2018, 52 (1): 9- 13
doi: 10.3760/cma.j.issn.0253-9624.2018.01.003
[13]   LIU Y , QIU H F , TANG Y et al. Pregnancy outcome after the treatment of loop electrosurgical excision procedure or cold-knife conization for cervical intraepithelial neoplasia[J]. Gynecol Obstet Invest, 2014, 77 (4): 240- 244
doi: 10.1159/000360538
[14]   GATTA L A , KULLER J A , EHJ R . Pregnancy outcomes following cervical conization or loop electrosurgical excision procedures[J]. Obstet Gynecol Surv, 2017, 72 (8): 494- 499
doi: 10.1097/OGX.0000000000000468
[15]   MILLER E S , SAKOWICZ A , GROBMAN W A . The association between cervical dysplasia, a short cervix, and preterm birth[J]. Am J Obstet Gynecol, 2015, 213 (4): 543
[1] LI Chen,ZHU Yao,YANG Jinhua,XU Dongsheng,WANG Jianbing,CHEN Kun,LI Qilong. Incidence of lung cancer in Jiashan, Zhejiang province: trend analysis from 1987 to 2016 and projection from 2017 to 2019[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 367-373.
[2] JIANG Yanqi,YANG Yalan,YANG Ting,LI Yueling,CHEN Liling,YAN Jin,YANG Yanfang. Association of UCP2 rs659366 polymorphisms with the outcomes of patients after surgery for colorectal cancer[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 143-149.
[3] JIANG Xiyi,LI Lu,TANG Huijuan,CHEN Tianhui. Multiple risk factors prediction models for high risk population of colorectal cancer[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 194-200.
[4] PEI Lei, XU Jingjing, ZHANG Minming. Correlation between high signal intensity in cerebrum nucleus on unenhanced T1-weighted MR images and number of previous gadolinium-based contrast agent administration[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 487-491.
[5] LIU Chunmei, HUANG Pintong, WANG Yao, ZHANG Xu, YOU Xiangdong. Value of ultrasonography in diagnosis of xanthogranulomatous cholecystitis[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 552-556.
[6] LI Aijing, PAN Yuning, CHEN Bin, XIA Jianbi, GAN Fang, JIN Yinhua, ZHENG Jianjun. Association of parameters in dynamic contrast-enhanced MRI using reference region model with prognostic factors and molecular subtypes of breast cancer[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 505-510.
[7] WU Han,WANG Zhongjin,MING Wenjie,WANG Shuang,DING Meiping. Monitoring time of interictal epileptiform discharges by long-term video EEG in patients with epilepsy[J]. J Zhejiang Univ (Med Sci), 2017, 46(1): 30-35.
[8] XIA Guangfa, ZHU Juanying, YUAN Jun, CAO Bo, TANG Jie, CHEN Yiding. Efficacy of adjuvant endocrine therapy in breast cancer patients with a positive-to-negative switch of hormone receptor status after neoadjuvant chemotherapy[J]. J Zhejiang Univ (Med Sci), 2016, 45(6): 614-619.
[9] CHEN Xiaohong, XU Yiping, LU Meiping. Clinical characteristics and etiology of children with hypereosinophilia[J]. J Zhejiang Univ (Med Sci), 2016, 45(3): 292-296.
[10] JIANG Qianqian, ZHULEPIYA Simayi, CHEN Yulan, ZHOU Xiaohuan, ZHANG Xiangyang, XU Xinjuan, YE Hong. Influencing factors of renal function in hypertensive patients with obstructive sleep apnea-hypopnea syndrome[J]. J Zhejiang Univ (Med Sci), 2016, 45(3): 261-267.
[11] BIAN Wei, GUAN Jichao, XIE Xishao, TONG Jin, ZHANG Xiaohui, SHOU Zhangfei. Effects of interim hemodialysis on survival and clinical outcomes in patients with maintenance peritoneal dialysis[J]. J Zhejiang Univ (Med Sci), 2016, 45(2): 195-200.
[12] CHEN Siteng, YU Lixin, DENG Wenfeng, MIAO Yun, LIU Rumin, YE Guirong. Characteristics of urinary tract infection in kidney transplant recipients and non-recipient patients[J]. J Zhejiang Univ (Med Sci), 2016, 45(2): 201-207.
[13] SHEN Haiyan, XU Chengfu, CHEN Chunxiao. Platelet count predicts therapeutic response of infliximab for active Crohn's disease[J]. J Zhejiang Univ (Med Sci), 2016, 45(1): 81-85.
[14] LU Han-ti, LI Fu-dong, LIN Jun-fen, HE Fan, SHEN Yi. Construction of early warning model of influenza-like illness in Zhejiang Province based on support vector machine[J]. J Zhejiang Univ (Med Sci), 2015, 44(6): 653-658.
[15] SONG Rui-rui, YU Xin-feng, YERFAN·Jiaerken, SUN Jian-zhong, MAO Ying-ying, GUO Yang, CHEN Zhi-cai, ZHANG Min-ming. Cerebral lesions of DWI hyperintensity in patients with subacute stroke assessed by intravoxel incoherent motion technique[J]. J Zhejiang Univ (Med Sci), 2015, 44(6): 632-637,644.