Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (3): 320-326    DOI: 10.3785/j.issn.1008-9292.2018.06.17
    
Research progress on exosomes in diagnosis and treatment of cardiovascular diseases
LI Fushan(),FANG Ran,RAO Lin,MENG Feilong,ZHAO Xiaoli*()
College of Life Sciences, Zhejiang University, Hangzhou 310058, China
Download: HTML( 14 )   PDF(2495KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Exosome is a specific subset of vesicles from intracellular origin vesicles containing varies of microRNAs, mRNAs, proteins and lipids. It has been demonstrated that contents of exosomes could be altered due to different physiological and pathological stress, which could be used as clinical biomarker to reveal the disease state. In addition, according to previous studies, exosomes could exert protective roles for cardiovascular diseases such as atherosclerosis, myocardial infarction and ischemia/reperfusion injury, etc. The aim of this review is to summarize current research progress on exosomes, related implications in diagnosis and treatment of cardiovascular diseases and corresponding mechanisms.



Key wordsExosomes      Cardiovascular diseases/diagnosis      Cardiovascular diseases/therapy      MicroRNAs      Stem cells      Review     
Received: 02 January 2018      Published: 18 September 2018
CLC:  Q2  
  R54  
Corresponding Authors: ZHAO Xiaoli     E-mail: fushanli@126.com;zhaoxiaoli@zju.edu.cn
Cite this article:

LI Fushan,FANG Ran,RAO Lin,MENG Feilong,ZHAO Xiaoli. Research progress on exosomes in diagnosis and treatment of cardiovascular diseases. J Zhejiang Univ (Med Sci), 2018, 47(3): 320-326.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2018.06.17     OR     http://www.zjujournals.com/med/Y2018/V47/I3/320


外泌体在心血管疾病诊疗中的作用研究进展

外泌体是内吞作用起源的脂质微囊泡,其内容物含微小RNA、mRNA转录本、蛋白质和脂质等。外泌体的分泌过程与细胞生理、病理条件密切相关,不同生理和病理状态下外泌体内容物成分会发生应激性变化。因此,心血管疾病发生过程中产生的外泌体内容物成分可以作为疾病状态判断的标志物。此外,不同细胞来源的外泌体还能够在动脉粥样硬化、心肌梗死、缺血再灌注损伤等心血管疾病的治疗中发挥重要作用。本文综述了外泌体在心血管疾病诊断与治疗中的应用和作用机制研究进展,为外泌体在心血管疾病中的应用提供依据。


关键词: 外泌体,  心血管疾病/诊断,  心血管疾病/治疗,  微RNAs,  干细胞,  综述 
Fig 1 Overall composition of extracellular vesicles[5]
[1]   WOLF P . The nature and significance of platelet products in human plasma[J]. Br J Haematol, 1967, 13 (3): 269- 288
doi: 10.1111/j.1365-2141.1967.tb08741.x
[2]   JOHNSTONE R M , ADAM M , HAMMOND J R et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles(exosomes)[J]. J Biol Chem, 1987, 262 (19): 9412- 9420
[3]   RAPOSO G , NIJMAN H W , STOORVOGEL W et al. B lymphocytes secrete antigen-presenting vesicles[J]. J Exp Med, 1996, 183 (3): 1161- 1172
doi: 10.1084/jem.183.3.1161
[4]   FICHTLSCHERER S , ZEIHER A M , DIMMELER S . Circulating microRNAs:biomarkers or mediators of cardiovascular diseases?[J]. Arterioscler Thromb Vasc Biol, 2011, 31 (11): 2383- 2390
doi: 10.1161/ATVBAHA.111.226696
[5]   COLOMBO M , RAPOSO G , THéRY C . Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles[J]. Annu Rev Cell Dev Biol, 2014, 30 255- 289
doi: 10.1146/annurev-cellbio-101512-122326
[6]   HANSEN L L , NIELSEN M E . Plant exosomes:using an unconventional exit to prevent pathogen entry?[J]. J Exp Bot, 2017, 69 (1): 59- 68
[7]   OLIVEIRA D L , NAKAYASU E S , JOFFE L S et al. Characterization of yeast extracellular vesicles:evidence for the participation of different pathways of cellular traffic in vesicle biogenesis[J]. PLoS One, 2010, 5 (6): e11113
doi: 10.1371/journal.pone.0011113
[8]   PERES D S R , PUCCIA R , RODRIGUES M L et al. Extracellular vesicle-mediated export of fungal RNA[J]. Sci Rep, 2015, 5 7763
doi: 10.1038/srep07763
[9]   SCHOREY J S , CHENG Y , SINGH P P et al. Exosomes and other extracellular vesicles in host-pathogen interactions[J]. EMBO Rep, 2015, 16 (1): 24- 43
doi: 10.15252/embr.201439363
[10]   SAMUEL M , BLEACKLEY M , ANDERSON M et al. Extracellular vesicles including exosomes in cross kingdom regulation:a viewpoint from plant-fungal interactions[J]. Front Plant Sci, 2015, 6 766
[11]   RAPOSO G , STOORVOGEL W . Extracellular vesicles:exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200 (4): 373- 383
doi: 10.1083/jcb.201211138
[12]   HERGENREIDER E , HEYDT S , TRéGUER K et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs[J]. Nat Cell Biol, 2012, 14 (3): 249- 256
doi: 10.1038/ncb2441
[13]   ARSLAN F , LAI R C , SMEETS M B et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury[J]. Stem Cell Res, 2013, 10 (3): 301- 312
doi: 10.1016/j.scr.2013.01.002
[14]   IBRAHIM A G , CHENG K , MARBáN E . Exosomes as critical agents of cardiac regeneration triggered by cell therapy[J]. Stem Cell Reports, 2014, 2 (5): 606- 619
doi: 10.1016/j.stemcr.2014.04.006
[15]   VALADI H , EKSTR?M K , BOSSIOS A et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9 (6): 654- 659
doi: 10.1038/ncb1596
[16]   CHEN J F , MURCHISON E P , TANG R et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure[J]. Proc Natl Acad Sci U S A, 2008, 105 (6): 2111- 2116
doi: 10.1073/pnas.0710228105
[17]   LU M , YUAN S , LI S et al. The exosome-derived biomarker in atherosclerosis and its clinical application[J]. J Cardiovasc Transl Res, 2018,
[18]   KUWABARA Y , ONO K , HORIE T et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage[J]. Circ Cardiovasc Genet, 2011, 4 (4): 446- 454
doi: 10.1161/CIRCGENETICS.110.958975
[19]   FUJITA M , KOMEDA M , HASEGAWA K et al. Pericardial fluid as a new material for clinical heart research[J]. Int J Cardiol, 2001, 77 (2-3): 113- 118
doi: 10.1016/S0167-5273(00)00462-9
[20]   MALLIARAS K , LI T S , LUTHRINGER D et al. Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells[J]. Circulation, 2012, 125 (1): 100- 112
doi: 10.1161/CIRCULATIONAHA.111.042598
[21]   ASHUR C , FRISHMAN W H . Cardiosphere-derived cells and ischemic heart failure[J]. Cardiol Rev, 2018, 26 (1): 8- 21
doi: 10.1097/CRD.0000000000000173
[22]   KISHORE R , KHAN M . Cardiac cell-derived exosomes:changing face of regenerative biology[J]. Eur Heart J, 2017, 38 (3): 212- 215
[23]   TANG Y L , ZHAO Q , QIN X et al. Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction[J]. Ann Thorac Surg, 2005, 80 (1): 229- 237
doi: 10.1016/j.athoracsur.2005.02.072
[24]   JUNG J H , FU X , YANG P C . Exosomes generated from iPSC-derivatives:new direction for stem cell therapy in human heart diseases[J]. Circ Res, 2017, 120 (2): 407- 417
doi: 10.1161/CIRCRESAHA.116.309307
[25]   SAHOO S , LOSORDO D W . Exosomes and cardiac repair after myocardial infarction[J]. Circ Res, 2014, 114 (2): 333- 344
doi: 10.1161/CIRCRESAHA.114.300639
[26]   YU B , GONG M , WANG Y et al. Cardiomyocyte protection by GATA-4 gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221 in microvesicles[J]. PLoS One, 2013, 8 (8): e73304
doi: 10.1371/journal.pone.0073304
[27]   DAVIDSON S M , YELLON D M . Exosomes and cardioprotection-a critical analysis[J]. Mol Aspects Med, 2018, 60 104- 114
doi: 10.1016/j.mam.2017.11.004
[28]   LU X . The role of exosomes and exosome-derived microRNAs in atherosclerosis[J]. Curr Pharm Des, 2017, 23 (40): 6182- 6193
[29]   ONG S G , LEE W H , HUANG M et al. Cross talk of combined gene and cell therapy in ischemic heart disease:role of exosomal microRNA transfer[J]. Circulation, 2014, 130 (11 Suppl 1): S60- S69
[30]   ZERNECKE A , BIDZHEKOV K , NOELS H et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection[J]. Sci Signal, 2009, 2 (100): ra81
[31]   GRAY W D , FRENCH K M , GHOSH-CHOUDHARY S et al. Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology[J]. Circ Res, 2015, 116 (2): 255- 263
doi: 10.1161/CIRCRESAHA.116.304360
[32]   LIU H , GAO W , YUAN J et al. Exosomes derived from dendritic cells improve cardiac function via activation of CD4(+) T lymphocytes after myocardial infarction[J]. J Mol Cell Cardiol, 2016, 91 123- 133
doi: 10.1016/j.yjmcc.2015.12.028
[33]   KHAN M , NICKOLOFF E , ABRAMOVA T et al. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction[J]. Circ Res, 2015, 117 (1): 52- 64
doi: 10.1161/CIRCRESAHA.117.305990
[34]   CHEVILLET J R , KANG Q , RUF I K et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes[J]. Proc Natl Acad Sci U S A, 2014, 111 (41): 14888- 14893
doi: 10.1073/pnas.1408301111
[35]   GALLET R , DAWKINS J , VALLE J et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction[J]. Eur Heart J, 2017, 38 (3): 201- 211
[36]   CHIMENTI I , SMITH R R , LI T S et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice[J]. Circ Res, 2010, 106 (5): 971- 980
doi: 10.1161/CIRCRESAHA.109.210682
[37]   FENG Y , HUANG W , WANI M et al. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22[J]. PLoS One, 2014, 9 (2): e88685
doi: 10.1371/journal.pone.0088685
[38]   LAI R C , ARSLAN F , LEE M M et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury[J]. Stem Cell Res, 2010, 4 (3): 214- 222
doi: 10.1016/j.scr.2009.12.003
[39]   BELTRAMI C , BESNIER M , SHANTIKUMAR S et al. Human pericardial fluid contains exosomes enriched with cardiovascular-expressed MicroRNAs and promotes therapeutic angiogenesis[J]. Mol Ther, 2017, 25 (3): 679- 693
doi: 10.1016/j.ymthe.2016.12.022
[40]   ZAKHAROVA L , SVETLOVA M , FOMINA A F . T cell exosomes induce cholesterol accumulation in human monocytes via phosphatidylserine receptor[J]. J Cell Physiol, 2007, 212 (1): 174- 181
doi: 10.1002/jcp.21013
[41]   HAO S , BAI O , LI F et al. Mature dendritic cells pulsed with exosomes stimulate efficient cytotoxic T-lymphocyte responses and antitumour immunity[J]. Immunology, 2007, 120 (1): 90- 102
[42]   ADAMIAK M , SAHOO S . Exosomes in myocardial repair:advances and challenges in the development of next-generation therapeutics[J]. Mol Ther, 2018, 26 (7): 1635- 1643
doi: 10.1016/j.ymthe.2018.04.024
[43]   SLVIJTER J P G , DAVIDSON S M , BOULANGER C M et al. Extracellular vesicles in diagnostics and therapy of the ischaemic heart:Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology[J]. Cardiovasc Res, 2018, 114 (1): 19- 34
doi: 10.1093/cvr/cvx211
[1] WANG Wei,LIU Zhen,LIU Jun,ZHEN Ping,LI Xusheng,SONG Mingjia. Choice of total knee arthroplasty: posterior cruciate ligament preserved or not[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 313-319.
[2] CHEN Ting,ZHAO Zhengyan,JIANG Pingping,SHU Qiang. Research progress on phenotype and genotype of hyperphenylalaninemia[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 219-226.
[3] QIAN Bo,ZHANG Yanling,MO Xuming. Research progress on transcription factors and signal pathways involved in congenital esophageal atresia[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 239-243.
[4] ZHANG Xiaoyan,KANG Lijun. Molecular and cell biological mechanism of olfactory adaptation in Caenorhabditis elegans[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 307-312.
[5] TIAN Guangfeng,GAO Hui,HU Shasha,SHU Qiang. Research progress on genetic and epigenetic mechanisms in congenital heart disease[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 227-238.
[6] HE Yuxian,ZHENG Liangrong. Effect of spinal cord stimulation on myocardial ischemia/infarction[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 201-206.
[7] LYU Dandan,YING Kejing. Regulatory role of autophagy in development of pulmonary artery hypertension[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 207-212.
[8] DANG Ying,LIN Yuliang,SUN Hongjun,SUN Jianjun,LI Changdong,LI Zhiyun. Isoliquiritigenin can inhibit migration and invasion of human glioma stem cells by down-regulating matrix metalloproteinases[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 181-186.
[9] JIANG Xiyi,LI Lu,TANG Huijuan,CHEN Tianhui. Multiple risk factors prediction models for high risk population of colorectal cancer[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 194-200.
[10] TANG Huijuan,JIANG Xiyi,LOU Jianlin,CHEN Tianhui. Methodology for survival assessment of cancer patients using population-based cancer registration data[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 104-109.
[11] ZHANG Yuchuan,CHEN Wei. Regulatory effect of Vav1 on T cells and its relation to clinical diseases[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 75-81.
[12] WANG Jiajing,GU Haiying. Research progress on genotyping of Helicobacter pylori[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 97-103.
[13] LING Jing,LI Hongrui,CHEN Weilin. Protein ubiquitination on the regulation of inflammatory bowel disease[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 82-88.
[14] DING Jingjing,LU Yunbi. Research progress on receptor interacting proteins in inflammation[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 89-96.
[15] FENG Mengyu,ZHANG Taiping,ZHAO Yupei. Present situation and prospect of enhanced recovery after surgery in pancreatic surgery[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 666-674.