Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (3): 307-312    DOI: 10.3785/j.issn.1008-9292.2018.06.15
    
Molecular and cell biological mechanism of olfactory adaptation in Caenorhabditis elegans
ZHANG Xiaoyan(),KANG Lijun*()
Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou 310058, China
Download: HTML( 19 )   PDF(1023KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Olfactory adaptation is an important physiological function of animals, which can protect their own neurons from overstimulation, and be better to deal with all kinds of stimuli in the surrounding environment. In this article, we discuss the neuronal basis of olfactory adaptation in Caenorhabditis elegans. Up to now, several intracellular regulatory factors have been discovered to be associated with olfactory adaptation in Caenorhabditis elegans, including cyclic guanosine monophosphate (cGMP) signaling in the olfactory neurons AWC, OSM-9 in transient receptor potential vanilloid (TRPV) channel, arrestin ARR-1, diglyceride (DAG) pathway in G protein signaling pathways, etc. However, the neural circuits of the olfactory adaptation remains largely unknown. This paper reviews molecular and cell biological mechanism of olfactory adaptation in Caenorhabditis elegans, so as to provide reference for studies on olfactory sensation in advanced animals.



Key wordsCaenorhabditis elegans      Smell      Molecular biology      Neurons      Review     
Received: 03 December 2017      Published: 18 September 2018
CLC:  Q421  
Corresponding Authors: KANG Lijun     E-mail: zhangxiaoyan1011@qq.com;kanglijun@zju.edu.cn
Cite this article:

ZHANG Xiaoyan,KANG Lijun. Molecular and cell biological mechanism of olfactory adaptation in Caenorhabditis elegans. J Zhejiang Univ (Med Sci), 2018, 47(3): 307-312.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2018.06.15     OR     http://www.zjujournals.com/med/Y2018/V47/I3/307


秀丽隐杆线虫嗅觉适应性的分子细胞生物学机制

嗅觉适应是动物的一项重要生理功能,可以保护自身细胞免受过度刺激,进而更好地应对周围环境变化。目前发现秀丽隐杆线虫嗅觉适应性主要与嗅觉神经元胞内信号分子和感受蛋白有关,如AWC神经元区域特异性环鸟苷酸(cGMP)反应、瞬时受体电位香草酸亚型(TRPV)离子通道蛋白OSM-9、细胞质基质抑制蛋白ARR-1和G蛋白信号通路中的甘油二酯(DAG)通路等均可以调控嗅觉适应,而神经环路方面的嗅觉适应性研究甚少。本文总结回顾了线虫嗅觉适应有关的分子细胞生物学机制,以期为高等生物嗅觉的研究提供参考。


关键词: 新小杆线虫, 漂亮,  嗅觉,  分子生物学,  神经元,  综述 
[1]   BARGMANN C I . Genetic and cellular analysis of behavior in C. elegans[J]. Annu Rev Neurosci, 1993, 16 47- 71
doi: 10.1146/annurev.ne.16.030193.000403
[2]   BARGMANN C I , HORVITZ H R . Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans[J]. Neuron, 1991, 7 (5): 729- 742
doi: 10.1016/0896-6273(91)90276-6
[3]   MORI I , OHSHIMA Y . Neural regulation of thermotaxis in Caenorhabditis elegans[J]. Nature, 1995, 376 (6538): 344- 348
doi: 10.1038/376344a0
[4]   BARGMANN C I . Chemosensation in C. elegans[J]. WormBook, 2006, 1- 29
[5]   MORI I . Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans[J]. Annu Rev Genet, 1999, 33 399- 422
doi: 10.1146/annurev.genet.33.1.399
[6]   LANS H , RADEMAKERS S , JANSEN G . A network of stimulatory and inhibitory Galpha-subunits regulates olfaction in Caenorhabditis elegans[J]. Genetics, 2004, 167 (4): 1677- 1687
doi: 10.1534/genetics.103.024786
[7]   HIROTSU T , IINO Y . Neural circuit-dependent odor adaptation in C. elegans is regulated by the Ras-MAPK pathway[J]. Genes Cells, 2005, 10 (6): 517- 530
doi: 10.1111/gtc.2005.10.issue-6
[8]   BARGMANN C I , HARTWIEG E , HORVITZH R . Odorant-selective genes and neurons mediate olfaction in C. elegans[J]. Cell, 1993, 74 (3): 515- 527
doi: 10.1016/0092-8674(93)80053-H
[9]   BARGMANN C I . Neurobiology of the Caenorhabditis elegans genome[J]. Science, 1998, 282 (5396): 2028- 2033
doi: 10.1126/science.282.5396.2028
[10]   COLBERT H A , SMITH T L , BARGMANN C I . OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans[J]. J Neurosci, 1997, 17 (21): 8259- 8269
doi: 10.1523/JNEUROSCI.17-21-08259.1997
[11]   AXEL R . Scents and sensibility:a molecular logic of olfactory perception(Nobel lecture)[J]. Angew Chem Int Ed Engl, 2005, 44 (38): 6110- 6127
doi: 10.1002/(ISSN)1521-3773
[12]   JANSEN G , THIJSSEN K L , WERNER P et al. The complete family of genes encoding G proteins of Caenorhabditis elegans[J]. Nat Genet, 1999, 21 (4): 414- 419
doi: 10.1038/7753
[13]   SENGUPTA P , CHOU J H , BARGMANN C I . odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl[J]. Cell, 1996, 84 (6): 899- 909
doi: 10.1016/S0092-8674(00)81068-5
[14]   BATTU G , HOIER E F , HAJNAL A . The C. elegans G-protein-coupled receptor SRA-13 inhibits RAS/MAPK signalling during olfaction and vulval development[J]. Development, 2003, 130 (12): 2567- 2577
doi: 10.1242/dev.00497
[15]   KOMATSU H , JIN Y H , L'ETOILE N et al. Functional reconstitution of a heteromeric cyclic nucleotide-gated channel of Caenorhabditis elegans in cultured cells[J]. Brain Res, 1999, 821 (1): 160- 168
[16]   COBURN C M , BARGMANN C I . A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans[J]. Neuron, 1996, 17 (4): 695- 706
doi: 10.1016/S0896-6273(00)80201-9
[17]   O'HALLORAN D M , ALTSHULER-KEYLIN S , LEE J I et al. Regulators of AWC-mediated olfactory plasticity in Caenorhabditis elegans[J]. PLoS Genet, 2009, 5 (12): e1000761
doi: 10.1371/journal.pgen.1000761
[18]   PALMITESSA A , HESS H A , BANY I A et al. Caenorhabditus elegans arrestin regulates neural G protein signaling and olfactory adaptation and recovery[J]. J Biol Chem, 2005, 280 (26): 24649- 24662
doi: 10.1074/jbc.M502637200
[19]   COLBERT H A , BARGMANN C I . Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans[J]. Neuron, 1995, 14 (4): 803- 812
doi: 10.1016/0896-6273(95)90224-4
[20]   SHIDARA H , HOTTA K , OKA K . Compartmentalized cGMP Responses of Olfactory Sensory Neurons in Caenorhabditis elegans[J]. J Neurosci, 2017, 37 (14): 3753- 3763
doi: 10.1523/JNEUROSCI.2628-16.2017
[21]   DE BONO M , MARICQ A V . Neuronal substrates of complex behaviors in C. elegans[J]. Annu Rev Neurosci, 2005, 28 451- 501
doi: 10.1146/annurev.neuro.27.070203.144259
[22]   L'ETOILE N D , COBURN C M , EASTHAM J et al. The cyclic GMP-dependent protein kinase EGL-4 regulates olfactory adaptation in C. elegans[J]. Neuron, 2002, 36 (6): 1079- 1089
doi: 10.1016/S0896-6273(02)01066-8
[23]   LEE J I , O'HALLORAN D M , EASTHAM-ANDERSON J et al. Nuclear entry of a cGMP-dependent kinase converts transient into long-lasting olfactory adaptation[J]. Proc Natl Acad Sci U S A, 2010, 107 (13): 6016- 6021
doi: 10.1073/pnas.1000866107
[24]   O'HALLORAN D M , HAMILTON O S , LEE J I et al. Changes in cGMP levels affect the localization of EGL-4 in AWC in Caenorhabditis elegans[J]. PLoS One, 2012, 7 (2): e31614
doi: 10.1371/journal.pone.0031614
[25]   KOMATSU H , MORI I , RHEEJ S et al. Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans[J]. Neuron, 1996, 17 (4): 707- 718
doi: 10.1016/S0896-6273(00)80202-0
[26]   COBURN C M , BARGMANN C I . A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans[J]. Neuron, 1996, 17 (4): 695- 706
doi: 10.1016/S0896-6273(00)80201-9
[27]   COLBERT H A , SMITH T L , BARGMANN C I . OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans[J]. J Neurosci, 1997, 17 (21): 8259- 8269
doi: 10.1523/JNEUROSCI.17-21-08259.1997
[28]   STERNWEIS P C , ROBISHAW J D . Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain[J]. J Biol Chem, 1984, 259 (22): 13806- 13813
[29]   MATSUKI M , KUNITOMO H , IINO Y . Goalpha regulates olfactory adaptation by antagonizing Gqalpha-DAG signaling in Caenorhabditis elegans[J]. Proc Natl Acad Sci U S A, 2006, 103 (4): 1112- 1117
doi: 10.1073/pnas.0506954103
[30]   KUHARA A , INADA H , KATSURA I et al. Negative regulation and gain control of sensory neurons by the C. elegans calcineurin TAX-6[J]. Neuron, 2002, 33 (5): 751- 763
doi: 10.1016/S0896-6273(02)00607-4
[31]   YAMADA K , HIROTSU T , MATSUKI M et al. GPC-1, a G protein gamma-subunit, regulates olfactory adaptation in Caenorhabditis elegans[J]. Genetics, 2009, 181 (4): 1347- 1357
doi: 10.1534/genetics.108.099002
[32]   MIYAHARA K , SUZUKI N , ISHIHARAT et al. TBX2/TBX3 transcriptional factor homologue controls olfactory adaptation in Caenorhabditis elegans[J]. J Neurobiol, 2004, 58 (3): 392- 402
doi: 10.1002/(ISSN)1097-4695
[33]   IKEDA D D , DUAN Y , MATSUKI M et al. CASY-1, an ortholog of calsyntenins/alcadeins, is essential for learning in Caenorhabditis elegans[J]. Proc Natl Acad Sci U S A, 2008, 105 (13): 5260- 5265
doi: 10.1073/pnas.0711894105
[1] WANG Wei,LIU Zhen,LIU Jun,ZHEN Ping,LI Xusheng,SONG Mingjia. Choice of total knee arthroplasty: posterior cruciate ligament preserved or not[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 313-319.
[2] CHEN Ting,ZHAO Zhengyan,JIANG Pingping,SHU Qiang. Research progress on phenotype and genotype of hyperphenylalaninemia[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 219-226.
[3] QIAN Bo,ZHANG Yanling,MO Xuming. Research progress on transcription factors and signal pathways involved in congenital esophageal atresia[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 239-243.
[4] TIAN Guangfeng,GAO Hui,HU Shasha,SHU Qiang. Research progress on genetic and epigenetic mechanisms in congenital heart disease[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 227-238.
[5] LI Fushan,FANG Ran,RAO Lin,MENG Feilong,ZHAO Xiaoli. Research progress on exosomes in diagnosis and treatment of cardiovascular diseases[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 320-326.
[6] HE Yuxian,ZHENG Liangrong. Effect of spinal cord stimulation on myocardial ischemia/infarction[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 201-206.
[7] LYU Dandan,YING Kejing. Regulatory role of autophagy in development of pulmonary artery hypertension[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 207-212.
[8] JIANG Xiyi,LI Lu,TANG Huijuan,CHEN Tianhui. Multiple risk factors prediction models for high risk population of colorectal cancer[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 194-200.
[9] WANG Hao,GUO Honggang,LOU Qi,SHI Qiaojuan. Effects of cysteinyl leukotrienes receptor antagonists on chronic brain injury after global cerebral ischemia/reperfusion[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 19-26.
[10] TANG Huijuan,JIANG Xiyi,LOU Jianlin,CHEN Tianhui. Methodology for survival assessment of cancer patients using population-based cancer registration data[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 104-109.
[11] ZHANG Yuchuan,CHEN Wei. Regulatory effect of Vav1 on T cells and its relation to clinical diseases[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 75-81.
[12] WANG Jiajing,GU Haiying. Research progress on genotyping of Helicobacter pylori[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 97-103.
[13] LING Jing,LI Hongrui,CHEN Weilin. Protein ubiquitination on the regulation of inflammatory bowel disease[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 82-88.
[14] DING Jingjing,LU Yunbi. Research progress on receptor interacting proteins in inflammation[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 89-96.
[15] FENG Mengyu,ZHANG Taiping,ZHAO Yupei. Present situation and prospect of enhanced recovery after surgery in pancreatic surgery[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 666-674.