Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (3): 227-238    DOI: 10.3785/j.issn.1008-9292.2018.06.02
    
Research progress on genetic and epigenetic mechanisms in congenital heart disease
TIAN Guangfeng(),GAO Hui,HU Shasha,SHU Qiang*()
Department of Cardiovascular and Thoracic Surgery, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
Download: HTML( 32 )   PDF(1206KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Congenital heart disease (CHD) is a type of birth defects due to the abnormal development of heart and blood vessels during embryonic stage. Studies indicate that the etiology of CHD is complicated. Genetic and epigenetic mechanisms including chromosomal abnormalities, gene mutations, nucleic acid modifications, non-coding RNAs may play important roles in CHD. At present, genetic mechanisms such as chromosome abnormality and gene mutation have been widely used in the diagnosis and treatment of clinical diseases. However, the application of genetic and epigenetic modification in diagnosis and treatment of CHD still need further research. This paper reviews the relationship between chromosomal abnormality, gene mutation, copy number variation, epigenetic modification and the occurrence of CHD, which may provide a basis for further exploring the early diagnosis and individualized therapy of CHD.



Key wordsHeart defects, congenital/genetics      Chromosome aberrations      Histones/genetics      Epigenesis, genetic      MicroRNAs      DNA methylation      Review     
Received: 23 February 2018      Published: 18 September 2018
CLC:  R722.11  
  R541.1  
Corresponding Authors: SHU Qiang     E-mail: guangfeng_tian@zju.edu.cn;shuqiang@zju.edu.cn
Cite this article:

TIAN Guangfeng,GAO Hui,HU Shasha,SHU Qiang. Research progress on genetic and epigenetic mechanisms in congenital heart disease. J Zhejiang Univ (Med Sci), 2018, 47(3): 227-238.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2018.06.02     OR     http://www.zjujournals.com/med/Y2018/V47/I3/227


遗传和表观遗传机制在先天性心脏病中的研究进展

先天性心脏病是胎儿期心脏及大血管发育异常所致的先天性畸形,是最常见的出生缺陷之一。先天性心脏病病因复杂,染色体异常、基因突变、核酸修饰、非编码RNA等遗传和表观遗传机制在其发生过程中发挥重要作用。现阶段,染色体异常、基因突变等遗传机制已经广泛应用于临床疾病的诊断与治疗。然而,针对遗传及表观遗传修饰在先天性心脏病的诊疗应用仍需深入研究。本文综述了染色体异常、基因突变、拷贝数变异及表观遗传修饰与先天性心脏病发生的关系,以期为进一步探究先天性心脏病早期诊断及个体化治疗提供依据。


关键词: 心脏缺损, 先天性/遗传学,  染色体畸变:组蛋白类/遗传学,  后成说, 遗传,  微RNAs,  DNA甲基化,  综述 
Fig 1 Effects of genetic and environmental factors on the occurrence of congenital heart disease
基因 心脏表型 参考文献
ACTC1 房间隔缺损、室间隔缺损 [17]
ACVR2B 心脏左右轴异位畸形 [18]
ALK2 房间隔缺损 [19]
AXIN2 先天性瓣膜缺损 [20]
ANKRD1 总静脉回流异常 [21]
BAF60C 房间隔缺损、室间隔缺损、房室间隔缺损、心脏圆锥动脉畸形 [22]
BRAF 肺动脉狭窄、房间隔缺损 [23]
BRG1 房间隔缺损、室间隔缺损 [24]
CHD7 法洛四联症、右室双向流出道 [25]
CITED2 房间隔缺损、室间隔缺损 [26]
CRELD1 房室间隔缺损 [27-29]
CX40 心室发育不良 [30]
CX43 法洛四联症 [31]
DLC1 房间隔缺损 [32]
ELN 上腔静脉主动脉狭窄 [33]
FOXH1 法洛四联症、先天性心功能异常 [34]
GATA4 房间隔缺损、房室间隔缺损、法洛四联症 [35-38]
GATA6 持续性动脉硬化性肺动脉瓣 [39]
GDF1 法洛四联症、大动脉转位 [19]
GJA5 室间隔缺损、法洛四联症、主动脉狭窄 [40-41]
HAND2 法洛四联症 [42-43]
HDAC5 室间隔缺损 [44]
HEY2 三尖瓣闭锁 [45]
HRAS IRX4 肺动脉狭窄、心动过速室间隔缺损 [46][47]
JAG1 法洛四联症 [48-49]
KRAS 肺动脉狭窄、房间隔缺损 [50]
MAP2K1 肺动脉狭窄、房间隔缺损 [51]
MED13L 大动脉转位、左心发育不良、主动脉狭窄 [52]
MYBPC3 房间隔缺损、室间隔缺损 [53-55]
MEF2C 室间隔缺损 [56]
MESP1 右室双向流出道 [57]
MYH6 房间隔缺损 [58]
MYH7 左心室心肌致密化不全、二叶式主动脉 [59]
NKX2.5 房间隔缺损、室间隔缺损、法洛四联症、右室双向流出道、左心发育不全 [60-64]
NKX2.6 持续性动脉硬化性肺动脉瓣 [65]
NODAL 大动脉转位 [66-69]
NOTCH1 主动脉瓣疾病 [67-68]
NOTCH2 法洛四联症、肺动脉狭窄、主动脉狭窄 [69]
NR2F2 房间隔缺损、主动脉狭窄 [70]
PTPN11 房间隔缺损、室间隔缺损、肺动脉狭窄 [71]
RAF1 房间隔缺损、法洛四联症 [72]
PAX2 室间隔缺损 [73]
RIT1 室间隔缺损、法洛四联症、主动脉狭窄 [74]
SEMA3E 法洛四联症、右室双向流出道 [75]
SMAD6 主动脉瓣疾病 [76]
SMYD1 心室发育不良 [77]
SOS1 房间隔缺损、室间隔缺损、法洛四联症 [78]
SOX9 法洛四联症 [79]
STRT1 房间隔缺损、室间隔缺损 [80]
TBX1 室间隔缺损、主动脉弓中断 [81-83]
TBX5 房间隔缺损、室间隔缺损、房室间隔缺损 [84]
TBX20 房间隔缺损、室间隔缺损、左心发育不良、动脉导管未闭 [85-86]
TDGF1 法洛四联症 [34]
WHSC1 房间隔缺损、室间隔缺损 [87]
ZFPM2 法洛四联症、右室双向流出道 [88]
ZIC3 房间隔缺损、大动脉异位 [89-91]
Tab 1 Genes associated with congenital heart disease and their cardiac phenotypes
[1]   VAN DER BOM T , ZOMER A C , ZWINDERMAN A H et al. The changing epidemiology of congenital heart disease[J]. Nat Rev Cardiol, 2011, 8 (1): 50- 60
doi: 10.1038/nrcardio.2010.166
[2]   GELB B , BRUECKNER M , CHUNG W et al. The Congenital Heart Disease Genetic Network Study:rationale, design, and early results[J]. Circ Res, 2013, 112 (4): 698- 706
doi: 10.1161/CIRCRESAHA.111.300297
[3]   王卫平 . 儿科学[M]. 8版 北京: 人民卫生出版社, 2013: 292
WANG Weiping . Pediatrics[M]. 8th ed Beijing: People's Medical Publishing House, 2013: 292
[4]   李烁琳, 顾若漪, 黄国英 . 儿童先天性心脏病流行病学特征[J]. 中国实用儿科杂志, 2017, 32 (11): 871- 875
LI Shuolin , GU Ruoyi , HUANG Guoying . Epidemiological characteristics of congenital heart disease in children[J]. Chinese Journal of Practical Pediatrics, 2017, 32 (11): 871- 875
[5]   MADEMONT-SOLER I , MORALES C , SOLER A et al. Prenatal diagnosis of chromosomal abnormalities in fetuses with abnormal cardiac ultrasound findings:evaluation of chromosomal microarray-based analysis[J]. Ultrasound Obstet Gynecol, 2013, 41 (4): 375- 382
doi: 10.1002/uog.12372
[6]   HARTMAN R J , RASMUSSEN S A , BOTTO L D et al. The contribution of chromosomal abnormalities to congenital heart defects:a population-based study[J]. Pediatr Cardiol, 2011, 32 (8): 1147- 1157
doi: 10.1007/s00246-011-0034-5
[7]   PETRY P , POLLI J B , MATTOS V F et al. Clinical features and prognosis of a sample of patients with trisomy 13(Patau syndrome) from Brazil[J]. Am J Med Genet A, 2013, 161A (6): 1278- 1283
[8]   FAHED A C , GELB B D , SEIDMAN J G et al. Genetics of congenital heart disease:the glass half empty[J]. Circ Res, 2013, 112 (4): 707- 720
doi: 10.1161/CIRCRESAHA.112.300853
[9]   VOELCKEL M A , GIRARDOT L , GIUSIANO B et al. Allelic variations at the haploid TBX1 locus do not influence the cardiac phenotype in cases of 22q11 microdeletion[J]. Ann Genet, 2004, 47 (3): 235- 240
doi: 10.1016/j.anngen.2004.04.002
[10]   王栋, 刘迎龙 . 先天性心脏病宫内微创治疗进展[J]. 心肺血管病杂志, 2011, 30 (1): 79- 81
WANG Dong , LIU Yinglong . Progress in intrauterine minimally invasive treatment of congenital heart disease[J]. Journal of Cardiovascular and Pulmonary Diseases, 2011, 30 (1): 79- 81
doi: 10.3969/j.issn.1007-5062.2011.01.025
[11]   于宝生 . Turner综合征的诊断和治疗[J]. 中华实用儿科临床杂志, 2013, 28 (8): 561- 563
YU Baosheng . Diagnosis and treatment of Turner syndrome[J]. Chinese Journal of Applied Clinical Pediatrics, 2013, 28 (8): 561- 563
doi: 10.3760/cma.j.issn.2095-428X.2013.08.001
[12]   DEMIRHAN O , TANRIVERDI N , YILMAZ M B et al. Report of a new case with pentasomy X and novel clinical findings[J]. Balkan J Med Genet, 2015, 18 (1): 85- 92
doi: 10.1515/bjmg-2015-0010
[13]   吴晓丽, 符芳, 李茹 et al. 染色体微阵列分析技术对先天性心脏病胎儿进行遗传病因学诊断的临床价值[J]. 中华妇产科杂志, 49 (12): 893- 898
WU Xiaoli , FU Fang , LI Ru et al. Clinical value of genome-wide high resolution chromosomal microarray analysis in etiological study of fetuses with congenital heart defects[J]. Chinese Journal of Obstetrics and Gynecology, 2014, 49 (12): 893- 898
doi: 10.3760/cma.j.issn.0529-567x.2014.12.003
[14]   DE WIT M C. Re: detection of submicroscopic chromosomal aberrations by array-based comparative genomic hybridization in fetuses with congenital heart disease. Y. Yan, Q. Wu, L. Zhang, X. Wang, S. Dan, D. Deng, L. Sun, L. Yao, Y. Ma and L. Wang. Ultrasound Obstet Gynecol 2014;43: 404-412[J]. Ultrasound Obstet Gynecol, 2014, 43(4): 363.
[15]   MUNTEAN I , TOGǎNEL R , BENEDEK T . Genetics of congenital heart disease:past and present[J]. Biochem Genet, 2017, 55 (2): 105- 123
doi: 10.1007/s10528-016-9780-7
[16]   VECOLI C , PULIGNANI S , FOFFA I et al. Congenital heart disease:the crossroads of genetics, epigenetics and environment[J]. Curr Genomics, 2014, 15 (5): 390- 399
doi: 10.2174/1389202915666140716175634
[17]   MONSERRAT L , HERMIDA-PRIETO M , FERNANDEZ X et al. Mutation in the alpha-cardiac actin gene associated with apical hypertrophic cardiomyopathy, left ventricular non-compaction, and septal defects[J]. Eur Heart J, 2007, 28 (16): 1953- 1961
doi: 10.1093/eurheartj/ehm239
[18]   KOSAKI R , GEBBIA M , KOSAKI K et al. Left-right axis malformations associated with mutations in ACVR2B, the gene for human activin receptor type ⅡB[J]. Am J Med Genet, 1999, 82 (1): 70- 76
doi: 10.1002/(ISSN)1096-8628
[19]   KARKERA J D , LEE J S , ROESSLER E et al. Loss-of-function mutations in growth differentiation factor-1(GDF1) are associated with congenital heart defects in humans[J]. Am J Hum Genet, 2007, 81 (5): 987- 994
doi: 10.1086/522890
[20]   BOSADA F M , DEVASTHALI V , JONES K A et al. Wnt/beta-catenin signaling enables developmental transitions during valvulogenesis[J]. Development, 2016, 143 (6): 1041- 1054
doi: 10.1242/dev.130575
[21]   CINQUETTI R , BADI I , CAMPIONE M et al. Transcriptional deregulation and a missense mutation define ANKRD1 as a candidate gene for total anomalous pulmonary venous return[J]. Hum Mutat, 2008, 29 (4): 468- 474
doi: 10.1002/humu.20711
[22]   LICKERT H , TAKEUCHI J K , VON BOTH I et al. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development[J]. Nature, 2004, 432 (7013): 107- 112
doi: 10.1038/nature03071
[23]   SARKOZY A , CARTA C , MORETTI S et al. Germline BRAF mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes:molecular diversity and associated phenotypic spectrum[J]. Hum Mutat, 2009, 30 (4): 695- 702
doi: 10.1002/humu.v30:4
[24]   HANG C T , YANG J , HAN P et al. Chromatin regulation by Brg1 underlies heart muscle development and disease[J]. Nature, 2010, 466 (7302): 62- 67
doi: 10.1038/nature09130
[25]   BAJPAI R , CHEN D A , RADA-IGLESIAS A et al. CHD7 cooperates with PBAF to control multipotent neural crest formation[J]. Nature, 2010, 463 (7283): 958- 962
doi: 10.1038/nature08733
[26]   SPERLING S , GRIMM C H , DUNKEL I et al. Identification and functional analysis of CITED2 mutations in patients with congenital heart defects[J]. Hum Mutat, 2005, 26 (6): 575- 582
doi: 10.1002/(ISSN)1098-1004
[27]   ROBINSON S W , MORRIS C D , GOLDMUNTZ E et al. Missense mutations in CRELD1 are associated with cardiac atrioventricular septal defects[J]. Am J Hum Genet, 2003, 72 (4): 1047- 1052
doi: 10.1086/374319
[28]   ZATYKA M , PRIESTLEY M , LADUSANS E J et al. Analysis of CRELD1 as a candidate 3p25 atrioventicular septal defect locus (AVSD2)[J]. Clin Genet, 2005, 67 (6): 526- 528
doi: 10.1111/j.1399-0004.2005.00435.x
[29]   MASLEN C L , BABCOCK D , ROBINSON S W et al. CRELD1 mutations contribute to the occurrence of cardiac atrioventricular septal defects in Down syndrome[J]. Am J Med Genet A, 2006, 140 (22): 2501- 2505
[30]   MENENDEZ-MONTES I , ESCOBAR B , PALACIOS B et al. Myocardial VHL-HIF signaling controls an embryonic metabolic switch essential for cardiac maturation[J]. Dev Cell, 2016, 39 (6): 724- 739
doi: 10.1016/j.devcel.2016.11.012
[31]   WU Y , MA X J , WANG H J et al. Expression of Cx43-related microRNAs in patients with tetralogy of Fallot[J]. World J Pediatr, 2014, 10 (2): 138- 144
doi: 10.1007/s12519-013-0434-0
[32]   LIN B, WANG Y, WANG Z, et al. Uncovering the rare variants of DLC1 isoform 1 and their functional effects in a Chinese sporadic congenital heart disease cohort[J/OL]. PLoS One, 2014, 9(2): e90215.
[33]   LI D Y , TOLAND A E , BOAK B B et al. Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis[J]. Hum Mol Genet, 1997, 6 (7): 1021- 1028
doi: 10.1093/hmg/6.7.1021
[34]   ROESSLER E , OUSPENSKAIA M V , KARKERA J D et al. Reduced NODAL signaling strength via mutation of several pathway members including FOXH1 is linked to human heart defects and holoprosencephaly[J]. Am J Hum Genet, 2008, 83 (1): 18- 29
doi: 10.1016/j.ajhg.2008.05.012
[35]   GARG V , KATHIRIYA I S , BARNES R et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5[J]. Nature, 2003, 424 (6947): 443- 447
doi: 10.1038/nature01827
[36]   TOMITA-MITCHELL A , MASLEN C L , MORRIS C D et al. GATA4 sequence variants in patients with congenital heart disease[J]. J Med Genet, 2007, 44 (12): 779- 783
doi: 10.1136/jmg.2007.052183
[37]   ZHANG W , LI X , SHEN A et al. GATA4 mutations in 486 Chinese patients with congenital heart disease[J]. Eur J Med Genet, 2008, 51 (6): 527- 535
doi: 10.1016/j.ejmg.2008.06.005
[38]   NEMER G , FADLALAH F , USTA J et al. A novel mutation in the GATA4 gene in patients with Tetralogy of Fallot[J]. Hum Mutat, 2006, 27 (3): 293- 294
[39]   KODO K , NISHIZAWA T , FURUTANI M et al. GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling[J]. Proc Natl Acad Sci U S A, 2009, 106 (33): 13933- 13938
doi: 10.1073/pnas.0904744106
[40]   CHRISTIANSEN J , DYCK J D , ELYAS B G et al. Chromosome 1q21.1 contiguous gene deletion is associated with congenital heart disease[J]. Circ Res, 2004, 94 (11): 1429- 1435
doi: 10.1161/01.RES.0000130528.72330.5c
[41]   COOPER G M , COE B P , GIRIRAJAN S et al. A copy number variation morbidity map of developmental delay[J]. Nat Genet, 2011, 43 (9): 838- 846
doi: 10.1038/ng.909
[42]   ZHAO Y , SAMAL E , SRIVASTAVA D . Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis[J]. Nature, 2005, 436 (7048): 214- 220
doi: 10.1038/nature03817
[43]   SRIVASTAVA D , THOMAS T , LIN Q et al. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND[J]. Nat Genet, 1997, 16 (2): 154- 160
doi: 10.1038/ng0697-154
[44]   CHANG S , MCKINSEY T A , ZHANG C L et al. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development[J]. Mol Cell Biol, 2004, 24 (19): 8467- 8476
doi: 10.1128/MCB.24.19.8467-8476.2004
[45]   JORDAN V K , ROSENFELD J A , LALANI S R et al. Duplication of HEY2 in cardiac and neurologic development[J]. Am J Med Genet A, 2015, 167A (9): 2145- 2149
[46]   AOKI Y , NIIHORI T , KAWAME H et al. Germline mutations in HRAS proto-oncogene cause Costello syndrome[J]. Nat Genet, 2005, 37 (10): 1038- 1040
doi: 10.1038/ng1641
[47]   CHENG Z , WANG J , SU D et al. Two novel mutations of the IRX4 gene in patients with congenital heart disease[J]. Hum Genet, 2011, 130 (5): 657- 662
doi: 10.1007/s00439-011-0996-7
[48]   KRANTZ I D , SMITH R , COLLITON R P et al. Jagged1 mutations in patients ascertained with isolated congenital heart defects[J]. Am J Med Genet, 1999, 84 (1): 56- 60
doi: 10.1002/(ISSN)1096-8628
[49]   ELDADAH Z A , HAMOSH A , BIERY N J et al. Familial Tetralogy of Fallot caused by mutation in the jagged1 gene[J]. Hum Mol Genet, 2001, 10 (2): 163- 169
doi: 10.1093/hmg/10.2.163
[50]   SCHUBBERT S , ZENKER M , ROWE S L et al. Germline KRAS mutations cause Noonan syndrome[J]. Nat Genet, 2006, 38 (3): 331- 336
doi: 10.1038/ng1748
[51]   SCHULZ A L , ALBRECHT B , ARICI C et al. Mutation and phenotypic spectrum in patients with cardio-facio-cutaneous and Costello syndrome[J]. Clin Genet, 2008, 73 (1): 62- 70
[52]   MUNCKE N , JUNG C , RVDIGER H et al. Missense mutations and gene interruption in PROSIT240, a novel TRAP240-like gene, in patients with congenital heart defect(transposition of the great arteries)[J]. Circulation, 2003, 108 (23): 2843- 2850
doi: 10.1161/01.CIR.0000103684.77636.CD
[53]   ZAHKA K , KALIDAS K , SIMPSON M A et al. Homozygous mutation of MYBPC3 associated with severe infantile hypertrophic cardiomyopathy at high frequency among the Amish[J]. Heart, 2008, 94 (10): 1326- 1330
[54]   XIN B , PUFFENBERGER E , TUMBUSH J et al. Homozygosity for a novel splice site mutation in the cardiac myosin-binding protein C gene causes severe neonatal hypertrophic cardiomyopathy[J]. Am J Med Genet A, 2007, 143A (22): 2662- 2667
doi: 10.1002/ajmg.a.v143a:22
[55]   LEKANNE D R H , MUURLING-VLIETMAN J J , HRUDA J et al. Two cases of severe neonatal hypertrophic cardiomyopathy caused by compound heterozygous mutations in the MYBPC3 gene[J]. J Med Genet, 2006, 43 (10): 829- 832
doi: 10.1136/jmg.2005.040329
[56]   QIAO X H , WANG F , ZHANG X L et al. MEF2C loss-of-function mutation contributes to congenital heart defects[J]. Int J Med Sci, 2017, 14 (11): 1143- 1153
doi: 10.7150/ijms.21353
[57]   ZHANG M , LI F X , LIU X Y et al. MESP1 loss-of-function mutation contributes to double outlet right ventricle[J]. Molecular Medicine Reports, 2017, 16 (3): 2747- 2754
doi: 10.3892/mmr.2017.6875
[58]   GRANADOS-RIVERON J T , GHOSH T K , POPE M et al. Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects[J]. Hum Mol Genet, 2010, 19 (20): 4007- 4016
doi: 10.1093/hmg/ddq315
[59]   POSTMA A V , VAN ENGELEN K , VAN DE MEERAKKER J et al. Mutations in the sarcomere gene MYH7 in Ebstein anomaly[J]. Circ Cardiovasc Genet, 2011, 4 (1): 43- 50
doi: 10.1161/CIRCGENETICS.110.957985
[60]   SCHOTT J J , BENSON D W , BASSON C T et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5[J]. Science, 1998, 281 (5373): 108- 111
doi: 10.1126/science.281.5373.108
[61]   GOLDMUNTZ E , GEIGER E , BENSON D W . NKX2.5 mutations in patients with tetralogy of fallot[J]. Circulation, 2001, 104 (21): 2565- 2568
doi: 10.1161/hc4601.098427
[62]   MCELHINNEY D B , GEIGER E , BLINDER J et al. NKX2.5 mutations in patients with congenital heart disease[J]. J Am Coll Cardiol, 2003, 42 (9): 1650- 1655
doi: 10.1016/j.jacc.2003.05.004
[63]   PENG T , WANG L , ZHOU S F et al. Mutations of the GATA4 and NKX2.5 genes in Chinese pediatric patients with non-familial congenital heart disease[J]. Genetica, 2010, 138 (11-12): 1231- 1240
doi: 10.1007/s10709-010-9522-4
[64]   WANG J , XIN Y F , LIU X Y et al. A novel NKX2-5 mutation in familial ventricular septal defect[J]. Int J Mol Med, 2011, 27 (3): 369- 375
[65]   HEATHCOTE K , BRAYBROOK C , ABUSHABAN L et al. Common arterial trunk associated with a homeodomain mutation of NKX2.6[J]. Hum Mol Genet, 2005, 14 (5): 585- 593
doi: 10.1093/hmg/ddi055
[66]   MOHAPATRA B , CASEY B , LI H et al. Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations[J]. Hum Mol Genet, 2009, 18 (5): 861- 871
doi: 10.1093/hmg/ddn411
[67]   ROESSLER E , PEI W , OUSPENSKAIA M V et al. Cumulative ligand activity of NODAL mutations and modifiers are linked to human heart defects and holoprosencephaly[J]. Mol Genet Metab, 2009, 98 (1-2): 225- 234
doi: 10.1016/j.ymgme.2009.05.005
[68]   GARG V , MUTH A N , RANSOM J F et al. Mutations in NOTCH1 cause aortic valve disease[J]. Nature, 2005, 437 (7056): 270- 274
doi: 10.1038/nature03940
[69]   RICHARDS A A , GARG V . Genetics of congenital heart disease[J]. Curr Cardiol Rev, 2010, 6 (2): 91- 97
doi: 10.2174/157340310791162703
[70]   Al T S , MANICKARAJ A K , MERCER C L et al. Rare variants in NR2F2 cause congenital heart defects in humans[J]. Am J Hum Genet, 2014, 94 (4): 574- 585
doi: 10.1016/j.ajhg.2014.03.007
[71]   TARTAGLIA M , MEHLER E L , GOLDBERG R et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome[J]. Nat Genet, 2001, 29 (4): 465- 468
doi: 10.1038/ng772
[72]   PANDIT B , SARKOZY A , PENNACCHIO L A et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy[J]. Nat Genet, 2007, 39 (8): 1007- 1012
doi: 10.1038/ng2073
[73]   DU Z , FEI T , VERHAAK R G et al. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer[J]. Nat Struct Mol Biol, 2013, 20 (7): 908- 913
doi: 10.1038/nsmb.2591
[74]   AOKI Y , NⅡHORI T , BANJO T et al. Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome[J]. Am J Hum Genet, 2013, 93 (1): 173- 180
doi: 10.1016/j.ajhg.2013.05.021
[75]   LALANI S R, SAFIULLAH A M, MOLINARI L M, et al. SEMA3E mutation in a patient with CHARGE syndrome[J/OL]. J Med Genet, 2004, 41(7): e94.
[76]   TAN H L , GLEN E , T?PF A et al. Nonsynonymous variants in the SMAD6 gene predispose to congenital cardiovascular malformation[J]. Hum Mutat, 2012, 33 (4): 720- 727
doi: 10.1002/humu.22030
[77]   PARK C Y , PIERCE S A , VON D M et al. skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration[J]. Proc Natl Acad Sci U S A, 2010, 107 (48): 20750- 20755
doi: 10.1073/pnas.1013493107
[78]   ROBERTS A E , ARAKI T , SWANSON K D et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome[J]. Nat Genet, 2007, 39 (1): 70- 74
doi: 10.1038/ng1926
[79]   AKIYAMA H , CHABOISSIER M C , BEHRINGER R R et al. Essential role of Sox9 in the pathway that controls formation of cardiac valves and septa[J]. Proc Natl Acad Sci U S A, 2004, 101 (17): 6502- 6507
doi: 10.1073/pnas.0401711101
[80]   CHENG H L , MOSTOSLAVSKY R , SAITO S et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice[J]. Proc Natl Acad Sci U S A, 2003, 100 (19): 10794- 10799
doi: 10.1073/pnas.1934713100
[81]   JEROME L A , PAPAIOANNOU V E . DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1[J]. Nat Genet, 2001, 27 (3): 286- 291
doi: 10.1038/85845
[82]   GONG W, GOTTLIEB S, COLLINS J, et al. Mutation analysis of TBX1 in non-deleted patients with features of DGS/VCFS or isolated cardiovascular defects[J/OL]. J Med Genet, 2001, 38(12): E45.
[83]   JONES J W , TRACY M , PERRYMAN M et al. Airway anomalies in patients with 22q11.2 deletion syndrome:a 5-year review[J]. Ann Otol Rhinol Laryngol, 2018, 127 (6): 384- 389
doi: 10.1177/0003489418771711
[84]   BASSON C T , HUANG T , LIN R C et al. Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations[J]. Proc Natl Acad Sci U S A, 1999, 96 (6): 2919- 2924
doi: 10.1073/pnas.96.6.2919
[85]   KIRK E P , SUNDE M , COSTA M W et al. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy[J]. Am J Hum Genet, 2007, 81 (2): 280- 291
doi: 10.1086/519530
[86]   POSCH M G , GRAMLICH M , SUNDE M et al. A gain-of-function TBX20 mutation causes congenital atrial septal defects, patent foramen ovale and cardiac valve defects[J]. J Med Genet, 2010, 47 (4): 230- 235
doi: 10.1136/jmg.2009.069997
[87]   NIMURA K , URA K , SHIRATORI H et al. A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome[J]. Nature, 2009, 460 (7252): 287- 291
doi: 10.1038/nature08086
[88]   IZZUTI A , SARKOZY A , NEWTON A L et al. Mutations of ZFPM2/FOG2 gene in sporadic cases of tetralogy of Fallot[J]. Hum Mutat, 2003, 22 (5): 372- 377
doi: 10.1002/(ISSN)1098-1004
[89]   MéGARBANé A , SALEM N , STEPHAN E et al. X-linked transposition of the great arteries and incomplete penetrance among males with a nonsense mutation in ZIC3[J]. Eur J Hum Genet, 2000, 8 (9): 704- 708
doi: 10.1038/sj.ejhg.5200526
[90]   WARE S M , PENG J , ZHU L et al. Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects[J]. Am J Hum Genet, 2004, 74 (1): 93- 105
doi: 10.1086/380998
[91]   CHHIN B , HATAYAMA M , BOZON D et al. Elucidation of penetrance variability of a ZIC3 mutation in a family with complex heart defects and functional analysis of ZIC3 mutations in the first zinc finger domain[J]. Hum Mutat, 2007, 28 (6): 563- 570
doi: 10.1002/humu.v28:6
[92]   HUANG J B , LIU Y L , LV X D . Pathogenic mechanisms of congenital heart disease[J]. Fetal Pediatr Pathol, 2010, 29 (5): 359- 372
doi: 10.3109/15513811003789628
[93]   BRUNEAU B G . The developmental genetics of congenital heart disease[J]. Nature, 2008, 451 (7181): 943- 948
doi: 10.1038/nature06801
[94]   LUXáN G, D'AMATO G, MACGROGAN D, et al. Endocardial notch signaling in cardiac development and disease[J/OL]. Circ Res, 2016, 118(1): e1-e18.
[95]   LI Y J , YANG Y Q . An update on the molecular diagnosis of congenital heart disease:focus on loss-of-function mutations[J]. Expert Rev Mol Diagn, 2017, 17 (4): 393- 401
doi: 10.1080/14737159.2017.1300062
[96]   HITZ M P, LEMIEUX-PERREAULT L P, MARSHALL C, et al. Rare copy number variants contribute to congenital left-sided heart disease[J/OL]. PLoS Genet, 2012, 8(9): e1002903.
[97]   PRIEST J R , GIRIRAJAN S , VU T H et al. Rare copy number variants in isolated sporadic and syndromic atrioventricular septal defects[J]. Am J Med Genet A, 2012, 158A (6): 1279- 1284
doi: 10.1002/ajmg.a.35315
[98]   SILVERSIDES C K , LIONEL A C , COSTAIN G et al. Rare copy number variations in adults with tetralogy of Fallot implicate novel risk gene pathways[J]. PLoS Genet, 2012, 8 (8): e1002843
doi: 10.1371/journal.pgen.1002843
[99]   SOEMEDI R , WILSON I J , BENTHAM J et al. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease[J]. Am J Hum Genet, 2012, 91 (3): 489- 501
doi: 10.1016/j.ajhg.2012.08.003
[100]   TOMITA-MITCHELL A , MAHNKE D K , STRUBLE C A et al. Human gene copy number spectra analysis in congenital heart malformations[J]. Physiol Genomics, 2012, 44 (9): 518- 541
doi: 10.1152/physiolgenomics.00013.2012
[101]   XIE L, CHEN J L, ZHANG W Z, et al. Rare de novo copy number variants in patients with congenital pulmonary atresia[J/OL]. PLoS One, 2014, 9(5): e96471.
[102]   AN Y , DUAN W , HUANG G et al. Genome-wide copy number variant analysis for congenital ventricular septal defects in Chinese Han population[J]. BMC Med Genomics, 2016, 9 2
[103]   KASPARIAN N A , DE ABREU LOURENCO R , WINLAW D S et al. Tell me once, tell me soon:parents' preferences for clinical genetics services for congenital heart disease[J]. Genet Med, 2018,
[104]   PEYVANDI S , LUPO P J , GARBARINI J et al. 22q11.2 deletions in patients with conotruncal defects:data from 1, 610 consecutive cases[J]. Pediatr Cardiol, 2013, 34 (7): 1687- 1694
doi: 10.1007/s00246-013-0694-4
[105]   WANG W , REIN B , ZHANG F et al. Chemogenetic activation of prefrontal cortex rescues synaptic and behavioral deficits in a mouse model of 16p11.2 deletion syndrome[J]. J Neurosci, 2018, 38 (26): 5939- 5948
doi: 10.1523/JNEUROSCI.0149-18.2018
[106]   SCAMBLER P J . 22q11 deletion syndrome:a role for TBX1 in pharyngeal and cardiovascular development[J]. Pediatr Cardiol, 2010, 31 (3): 378- 390
doi: 10.1007/s00246-009-9613-0
[107]   RACEDO S E , MCDONALD-MCGINN D M , CHUNG J H et al. Mouse and human CRKL is dosage sensitive for cardiac outflow tract formation[J]. Am J Hum Genet, 2015, 96 (2): 235- 244
doi: 10.1016/j.ajhg.2014.12.025
[108]   CHAPNIK E , SASSON V , BLELLOCH R et al. Dgcr8 controls neural crest cells survival in cardiovascular development[J]. Dev Biol, 2012, 362 (1): 50- 56
doi: 10.1016/j.ydbio.2011.11.008
[109]   BASSETT A S , CHOW E W , HUSTED J et al. Clinical features of 78 adults with 22q11 Deletion Syndrome[J]. Am J Med Genet A, 2005, 138 (4): 307- 313
[110]   SOEMEDI R , WILSON I J , BENTHAM J et al. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease[J]. Am J Hum Genet, 2012, 91 (3): 489- 501
doi: 10.1016/j.ajhg.2012.08.003
[111]   NAKANISHI T , MARKWALD R R , BALDWIN H S et al. Etiology and morphogenesis of congenital heart disease:from gene function and cellular interaction to morphology[M]. Tokyo: Springer, 2016.
[112]   CAREY A S , LIANG L , EDWARDS J et al. Effect of copy number variants on outcomes for infants with single ventricle heart defects[J]. Circ Cardiovasc Genet, 2013, 6 (5): 444- 451
doi: 10.1161/CIRCGENETICS.113.000189
[113]   OSOEGAWA K , IOVANNISCI D M , LIN B et al. Identification of novel candidate gene loci and increased sex chromosome aneuploidy among infants with conotruncal heart defects[J]. Am J Med Genet A, 2014, 164A (2): 397- 406
[114]   GARG V , KATHIRIYA I S , BARNES R et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5[J]. Nature, 2003, 424 (6947): 443- 447
doi: 10.1038/nature01827
[115]   SERRA-JUHé C , CUSCó I , HOMS A et al. DNA methylation abnormalities in congenital heart disease[J]. Epigenetics, 2015, 10 (2): 167- 177
doi: 10.1080/15592294.2014.998536
[116]   STRAUSSMAN R , NEJMAN D , ROBERTS D et al. Developmental programming of CpG island methylation profiles in the human genome[J]. Nat Struct Mol Biol, 2009, 16 (5): 564- 571
doi: 10.1038/nsmb.1594
[117]   SHENG W , QIAN Y , WANG H et al. Association between mRNA levels of DNMT1, DNMT3A, DNMT3B, MBD2 and LINE-1 methylation status in infants with tetralogy of Fallot[J]. Int J Mol Med, 2013, 32 (3): 694- 702
doi: 10.3892/ijmm.2013.1427
[118]   BARRINGHAUS K G , ZAMORE P D . MicroRNAs:regulating a change of heart[J]. Circulation, 2009, 119 (16): 2217- 2224
doi: 10.1161/CIRCULATIONAHA.107.715839
[119]   ZHOU J , DONG X , ZHOU Q et al. microRNA expression profiling of heart tissue during fetal development[J]. Int J Mol Med, 2014, 33 (5): 1250- 1260
doi: 10.3892/ijmm.2014.1691
[120]   WU K H , XIAO Q R , YANG Y et al. MicroRNA-34a modulates the Notch signaling pathway in mice with congenital heart disease and its role in heart development[J]. J Mol Cell Cardiol, 2018, 114 300- 308
doi: 10.1016/j.yjmcc.2017.11.015
[121]   GILSBACH R , PREISSL S , GRVNING B A et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease[J]. Nat Commun, 2014, 5 5288
doi: 10.1038/ncomms6288
[122]   CHAMBERLAIN A A, LIN M, LISTER R L, et al. DNA methylation is developmentally regulated for genes essential for cardiogenesis[J/OL]. J Am Heart Assoc, 2014, 3(3): e000976.
[123]   QIAN Y , XIAO D , GUO X et al. Hypomethylation and decreased expression of BRG1 in the myocardium of patients with congenital heart disease[J]. Birth Defects Res, 2017, 109 (15): 1183- 1195
doi: 10.1002/bdr2.v109.15
[124]   YODH J . ATP-dependent chromatin remodeling[J]. Adv Exp Med Biol, 2013, 767 263- 295
[125]   VAN DER HARST P , DE WINDT L J , CHAMBERS J C . Translational perspective on epigenetics in cardiovascular disease[J]. J Am Coll Cardiol, 2017, 70 (5): 590- 606
doi: 10.1016/j.jacc.2017.05.067
[126]   BARTEL D P . MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116 (2): 281- 297
doi: 10.1016/S0092-8674(04)00045-5
[127]   YATES L A , NORBURY C J , GILBERT R J . The long and short of microRNA[J]. Cell, 2013, 153 (3): 516- 519
doi: 10.1016/j.cell.2013.04.003
[128]   LIU N , OLSON E N . MicroRNA regulatory networks in cardiovascular development[J]. Dev Cell, 2010, 18 (4): 510- 525
doi: 10.1016/j.devcel.2010.03.010
[129]   O'BRIEN J E , KIBIRYEVA N , ZHOU X G et al. Noncoding RNA expression in myocardium from infants with tetralogy of Fallot[J]. Circ Cardiovasc Genet, 2012, 5 (3): 279- 286
doi: 10.1161/CIRCGENETICS.111.961474
[130]   CHINCHILLA A , LOZANO E , DAIMI H et al. MicroRNA profiling during mouse ventricular maturation:a role for miR-27 modulating Mef2c expression[J]. Cardiovasc Res, 2011, 89 (1): 98- 108
doi: 10.1093/cvr/cvq264
[131]   WANG L , TIAN D , HU J et al. MiRNA-145 regulates the development of congenital heart disease through targeting FXN[J]. Pediatr Cardiol, 2016, 37 (4): 629- 636
doi: 10.1007/s00246-015-1325-z
[1] WANG Wei,LIU Zhen,LIU Jun,ZHEN Ping,LI Xusheng,SONG Mingjia. Choice of total knee arthroplasty: posterior cruciate ligament preserved or not[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 313-319.
[2] QIAN Bo,ZHANG Yanling,MO Xuming. Research progress on transcription factors and signal pathways involved in congenital esophageal atresia[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 239-243.
[3] CHEN Ting,ZHAO Zhengyan,JIANG Pingping,SHU Qiang. Research progress on phenotype and genotype of hyperphenylalaninemia[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 219-226.
[4] ZHANG Xiaoyan,KANG Lijun. Molecular and cell biological mechanism of olfactory adaptation in Caenorhabditis elegans[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 307-312.
[5] LI Fushan,FANG Ran,RAO Lin,MENG Feilong,ZHAO Xiaoli. Research progress on exosomes in diagnosis and treatment of cardiovascular diseases[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 320-326.
[6] JIANG Xiyi,LI Lu,TANG Huijuan,CHEN Tianhui. Multiple risk factors prediction models for high risk population of colorectal cancer[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 194-200.
[7] HE Yuxian,ZHENG Liangrong. Effect of spinal cord stimulation on myocardial ischemia/infarction[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 201-206.
[8] LYU Dandan,YING Kejing. Regulatory role of autophagy in development of pulmonary artery hypertension[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 207-212.
[9] ZHANG Yuchuan,CHEN Wei. Regulatory effect of Vav1 on T cells and its relation to clinical diseases[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 75-81.
[10] LING Jing,LI Hongrui,CHEN Weilin. Protein ubiquitination on the regulation of inflammatory bowel disease[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 82-88.
[11] DING Jingjing,LU Yunbi. Research progress on receptor interacting proteins in inflammation[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 89-96.
[12] WANG Jiajing,GU Haiying. Research progress on genotyping of Helicobacter pylori[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 97-103.
[13] TANG Huijuan,JIANG Xiyi,LOU Jianlin,CHEN Tianhui. Methodology for survival assessment of cancer patients using population-based cancer registration data[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 104-109.
[14] ZHANG Yi,ZHANG Li,ZHANG Qiyu,HONG Weilong,LIN Xiaohua. microRNA-222 regulates proliferation and apoptosis of fibroblasts in hypertrophic scar via matrix metalloproteinase 1[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 609-617.
[15] FENG Mengyu,ZHANG Taiping,ZHAO Yupei. Present situation and prospect of enhanced recovery after surgery in pancreatic surgery[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 666-674.