Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (2): 201-206    DOI: 10.3785/j.issn.1008-9292.2018.04.15
Effect of spinal cord stimulation on myocardial ischemia/infarction
HE Yuxian1(),ZHENG Liangrong2,*()
1. Zhejiang University School of Medicine, Hangzhou 310016, China
2. Department of Cardiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
Download: HTML( 7 )   PDF(957KB)
Export: BibTeX | EndNote (RIS)      


Fatal arrhythmias, heart failure, and sudden cardiac death after myocardial ischemia/infarction are serious threats to human health. In recent years, studies have shown that spinal cord stimulation (SCS) can balance autonomic activity, inhibit myocardial structural remodeling, improve blood flow to ischemic myocardium, effectively reduce the incidence of arrhythmia, heart failure and sudden cardiac death after myocardial ischemia/infarction, but its specific mechanism has not yet been fully elucidated. The effect of SCS on cardiac function may be achieved by inhibiting neural remodeling, or by ameliorating structural remodeling and electrical remodeling. This article reviews the progress on the role and mechanism of SCS in myocardial ischemia/infarction.

Key wordsElectric stimulation      Spinal cord      Arrhythmias      Myocardial ischemia      Myocardial infarction      Autonomic nervous system/physiopathology      Review     
Received: 10 December 2017      Published: 24 July 2018
CLC:  R541  
Corresponding Authors: ZHENG Liangrong     E-mail:;
Cite this article:

HE Yuxian,ZHENG Liangrong. Effect of spinal cord stimulation on myocardial ischemia/infarction. J Zhejiang Univ (Med Sci), 2018, 47(2): 201-206.

URL:     OR



关键词: 电刺激,  脊髓,  心律失常,  心肌缺血,  心肌梗死,  自主神经系统/病理生理学,  综述 
[1]   SWISSA M , ZHOU S , GONZALEZ-GOMEZ I et al. Long-term subthreshold electrical stimulation of the left stellate ganglion and a canine model of sudden cardiac death[J]. J Am Coll Cardiol, 2004, 43 (5): 858- 864
doi: 10.1016/j.jacc.2003.07.053
[2]   HOWARD-QUIJANO K , TAKAMIYA T , DALE E A et al. Spinal cord stimulation reduces ventricular arrhythmias during acute ischemia by attenuation of regional myocardial excitability[J]. Am J Physiol Heart Circ Physiol, 2017, 313 (2): H421- H431
doi: 10.1152/ajpheart.00129.2017
[3]   CHEN P S , CHEN L S , CAO J M et al. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death[J]. Cardiovasc Res, 2001, 50 (2): 409- 416
doi: 10.1016/S0008-6363(00)00308-4
[4]   NGUYEN B L , LI H , FISHBEIN M C et al. Acute myocardial infarction induces bilateral stellate ganglia neural remodeling in rabbits[J]. Cardiovasc Pathol, 2012, 21 (3): 143- 148
doi: 10.1016/j.carpath.2011.08.001
[5]   ZHOU S , CHEN L S , MIYAUCHI Y et al. Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs[J]. Circ Res, 2004, 95 (1): 76- 83
doi: 10.1161/01.RES.0000133678.22968.e3
[6]   CAO J M , FISHBEIN M C , HAN J B et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia[J]. Circulation, 2000, 101 (16): 1960- 1969
doi: 10.1161/01.CIR.101.16.1960
[7]   HARDWICK J C , RYAN S E , BEAUMONT E et al. Dynamic remodeling of the guinea pig intrinsic cardiac plexus induced by chronic myocardial infarction[J]. Auton Neurosci, 2014, 181 4- 12
doi: 10.1016/j.autneu.2013.10.008
[8]   FALLEN E L , COATES G , NAHMIAS C et al. Recovery rates of regional sympathetic reinnervation and myocardial blood flow after acute myocardial infarction[J]. Am Heart J, 1999, 137 (5): 863- 869
doi: 10.1016/S0002-8703(99)70410-2
[9]   PELLEGRINO M J , HABECKER B A . STAT3 integrates cytokine and neurotrophin signals to promote sympathetic axon regeneration[J]. Mol Cell Neurosci, 2013, 56 272- 282
doi: 10.1016/j.mcn.2013.06.005
[10]   IEDA M , FUKUDA K , HISAKA Y et al. Endothelin-1 regulates cardiac sympathetic innervation in the rodent heart by controlling nerve growth factor expression[J]. J Clin Invest, 2004, 113 (6): 876- 884
doi: 10.1172/JCI200419480
[11]   LEE T M , CHANG N C , LIN S Z . Inhibition of infarction-induced sympathetic innervation with endothelin receptor antagonism via a PI3K/GSK-3beta-dependent pathway[J]. Lab Invest, 2017, 97 (3): 243- 255
doi: 10.1038/labinvest.2016.138
[12]   LAI X , ZHONG L , FU H X et al. Effects of neuregulin-1 on autonomic nervous system remodeling post-myocardial infarction in a rat model[J]. Neural Regen Res, 2017, 12 (11): 1905- 1910
doi: 10.4103/1673-5374.219054
[13]   LIEW R , CHIAM P T . Risk stratification for sudden cardiac death after acute myocardial infarction[J]. Ann Acad Med Singapore, 2010, 39 (3): 237- 246
[14]   LIU Y , YUE W S , LIAO S Y et al. Thoracic spinal cord stimulation improves cardiac contractile function and myocardial oxygen consumption in a porcine model of ischemic heart failure[J]. J Cardiovasc Electrophysiol, 2012, 23 (5): 534- 540
doi: 10.1111/jce.2012.23.issue-5
[15]   QIU Y , LI T , LI H et al. Continuous spinal cord stimulation reduced cardiac ischaemia/reperfusion injury in a rat model[J]. Heart Lung Circ, 2012, 21 (9): 564- 571
doi: 10.1016/j.hlc.2012.05.007
[16]   LIAO S Y , LIU Y , ZUO M et al. Remodelling of cardiac sympathetic re-innervation with thoracic spinal cord stimulation improves left ventricular function in a porcine model of heart failure[J]. Europace, 2015, 17 (12): 1875- 1883
doi: 10.1093/europace/euu409
[17]   ODENSTEDT J , LINDEROTH B , BERGFELDT L et al. Spinal cord stimulation effects on myocardial ischemia, infarct size, ventricular arrhythmia, and noninvasive electrophysiology in a porcine ischemia-reperfusion model[J]. Heart Rhythm, 2011, 8 (6): 892- 898
doi: 10.1016/j.hrthm.2011.01.029
[18]   ISSA Z F , ZHOU X , UJHELYI M R et al. Thoracic spinal cord stimulation reduces the risk of ischemic ventricular arrhythmias in a postinfarction heart failure canine model[J]. Circulation, 2005, 111 (24): 3217- 3220
doi: 10.1161/CIRCULATIONAHA.104.507897
[19]   LOPSHIRE J C , ZHOU X , DUSA C et al. Spinal cord stimulation improves ventricular function and reduces ventricular arrhythmias in a canine postinfarction heart failure model[J]. Circulation, 2009, 120 (4): 286- 294
doi: 10.1161/CIRCULATIONAHA.108.812412
[20]   MELZACK R , WALL P D . Pain mechanisms:a new theory[J]. Science, 1965, 150 (3699): 971- 979
doi: 10.1126/science.150.3699.971
[21]   SHEALY C N , MORTIMER J T , RESWICK J B . Electrical inhibition of pain by stimulation of the dorsal columns:preliminary clinical report[J]. Anesth Analg, 1967, 46 (4): 489- 491
[22]   SAGHER O , HUANG D L . Effects of cervical spinal cord stimulation on cerebral blood flow in the rat[J]. J Neurosurg, 2000, 93 (1 Suppl): 71- 76
[23]   SAGHER O , HUANG D L , KEEP R F . Spinal cord stimulation reducing infarct volume in a model of focal cerebral ischemia in rats[J]. J Neurosurg, 2003, 99 (1): 131- 137
doi: 10.3171/jns.2003.99.1.0131
[24]   LEE J Y , HUANG D L , KEEP R et al. Effect of electrical stimulation of the cervical spinal cord on blood flow following subarachnoid hemorrhage[J]. J Neurosurg, 2008, 109 (6): 1148- 1154
doi: 10.3171/JNS.2008.109.12.1148
[25]   HOSOBUCHI Y . Electrical stimulation of the cervical spinal cord increases cerebral blood flow in humans[J]. Appl Neurophysiol, 1985, 48 (1-6): 372- 376
[26]   NORRSELL H , ELIASSON T , MANNHEIMER C et al. Effects of pacing-induced myocardial stress and spinal cord stimulation on whole body and cardiac norepinephrine spillover[J]. Eur Heart J, 1997, 18 (12): 1890- 1896
doi: 10.1093/oxfordjournals.eurheartj.a015197
[27]   MANNHEIMER C , ELIASSON T , ANDERSSON B et al. Effects of spinal cord stimulation in angina pectoris induced by pacing and possible mechanisms of action[J]. BMJ, 1993, 307 (6902): 477- 480
doi: 10.1136/bmj.307.6902.477
[28]   FOREMAN R D , LINDEROTH B , ARDELL J L et al. Modulation of intrinsic cardiac neurons by spinal cord stimulation:implications for its therapeutic use in angina pectoris[J]. Cardiovasc Res, 2000, 47 (2): 367- 375
doi: 10.1016/S0008-6363(00)00095-X
[29]   JACQUES F , CARDINAL R , YIN Y et al. Spinal cord stimulation causes potentiation of right vagus nerve effects on atrial chronotropic function and repolarization in canines[J]. J Cardiovasc Electrophysiol, 2011, 22 (4): 440- 447
doi: 10.1111/j.1540-8167.2010.01915.x
[30]   NAAR J , JAYE D , LINDE C et al. Effects of spinal cord stimulation on cardiac sympathetic nerve activity in patients with heart failure[J]. Pacing Clin Electrophysiol, 2017, 40 (5): 504- 513
doi: 10.1111/pace.2017.40.issue-5
[31]   ZIPES D P , NEUZIL P , THERES H et al. Determining the feasibility of spinal cord neuromodulation for the treatment of chronic systolic heart failure:the DEFEAT-HF study[J]. JACC Heart Fail, 2016, 4 (2): 129- 136
doi: 10.1016/j.jchf.2015.10.006
[32]   NAAR J , JAYE D , LINDE C et al. Spinal cord stimulation in heart failure:effect on disease-associated biomarkers[J]. Eur J Heart Fail, 2017, 19 (2): 283- 286
doi: 10.1002/ejhf.2017.19.issue-2
[33]   SMITH F M , VERMEULEN M , CARDINAL R . Long-term spinal cord stimulation modifies canine intrinsic cardiac neuronal properties and ganglionic transmission during high-frequency repetitive activation[J]. Physiol Rep, 2016, 4 (13):
[34]   WANG S , ZHOU X , HUANG B et al. Spinal cord stimulation protects against ventricular arrhythmias by suppressing left stellate ganglion neural activity in an acute myocardial infarction canine model[J]. Heart Rhythm, 2015, 12 (7): 1628- 1635
doi: 10.1016/j.hrthm.2015.03.023
[35]   YU L , HUANG B , HE W et al. Spinal cord stimulation suppresses focal rapid firing-induced atrial fibrillation by inhibiting atrial ganglionated plexus activity[J]. J Cardiovasc Pharmacol, 2014, 64 (6): 554- 559
doi: 10.1097/FJC.0000000000000154
[36]   WANG S , ZHOU X , HUANG B et al. Spinal cord stimulation suppresses atrial fibrillation by inhibiting autonomic remodeling[J]. Heart Rhythm, 2016, 13 (1): 274- 281
doi: 10.1016/j.hrthm.2015.08.018
[37]   RAJENDRAN P S , NAKAMURA K , AJIJOLA O A et al. Myocardial infarction induces structural and functional remodelling of the intrinsic cardiac nervous system[J]. J Physiol, 2016, 594 (2): 321- 341
doi: 10.1113/JP271165
[1] DU Xiaotian,OUYANG Hongwei. Correlation between histone methylation level and pathological development of osteoarthritis[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 682-687.
[2] MI Shuang,WU Yanjun,HONG Zhenghua,WANG Zhangfu,FENG Xingbing,ZHENG Guangbin. Expression of TLR4/MyD88/NF-κB pathway genes and its related inflammatory factors in secondary spinal cord injury[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 609-616.
[3] LI Xue,LI Wenbin,FENG Shilan,WANG Rong. Research progress on mechanism in adaptation of hemoglobin to plateau hypoxia[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 674-681.
[4] ZHANG Sheng,HU Zhenjie,YE Lu,ZHENG Yaru. Application of Logistic regression and decision tree analysis in prediction of acute myocardial infarction events[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 594-602.
[5] DING Yidan,LI Wenbin,WANG Rong,ZHANG Jianchun. Research progress on the effects of plateau hypoxia on blood-brain barrier structure and drug permeability[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 668-673.
[6] KONG Limin,LU Jingyi,ZHU Huajian,ZHANG Jiankang. Research progress on selective immunoproteasome inhibitors[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 688-694.
[7] XU Jiajun,SHU Qiang. Application of 3D printing techniques in treatment of congenital heart disease[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 573-579.
[8] ZHANG Junhao,JIN Jinghua,YANG Wei. Autophagy regulates the function of vascular smooth muscle cells in the formation and rupture of intracranial aneurysms[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 552-559.
[9] CHEN Dianyu,QI Ming. Research progress on uniparental disomy in cancer[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 560-566.
[10] LIN Jing,CHEN Zhimin. Research progress on early identification of severe adenovirus pneumonia in children[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 567-572.
[11] GUO Danling,HU Hongjie,ZHAO Zhenhua,LYU Sangying,HUANG Yanan,JIANG Ruhong,PU Cailing,NI Hongxia. Value of myocardial scar in predicting malignant ventricular arrhythmia in patients with chronic myocardial infarction[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 511-516.
[12] CHEN Guangjie,WANG Xiaohao,TANG Daxing. Progress on evaluation, diagnosis and management of disorders of sex development[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 358-366.
[13] HUANG Shumin,ZHAO Zhengyan. Advances in newborn screening and immune system reconstitution of severe combined immunodeficiency[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 351-357.
[14] ZHANG Jianmin. Advances in surgical treatment of ischemic cerebrovascular disease[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 233-240.
[15] WU Yuxing, ZHANG Shihong, CHEN Zhong. The roles of habenula and related neural circuits in neuropsychiatric diseases[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 310-317.