Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (2): 194-200    DOI: 10.3785/j.issn.1008-9292.2018.04.14
    
Multiple risk factors prediction models for high risk population of colorectal cancer
JIANG Xiyi1(),LI Lu2,TANG Huijuan1,CHEN Tianhui1,3,*()
1. Group of Molecular Epidemiology & Cancer Precision Prevention, Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
2. School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
3. Medical School of Ningbo University, Ningbo 315211, China
Download: HTML( 36 )   PDF(961KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Colorectal cancer is caused by the interaction of genetic and environment factors. Domestic and foreign scholars have attempted to develop several colorectal cancer risk prediction models, in order to identity risk factors, to screen for high risk population and evaluate the risk of developing colorectal cancer, so as to provide personalized screening protocols for individuals with different risk, and eventually reduce the incidence and mortality rate of colorectal cancer. Currently, the common colorectal cancer risk prediction models were mainly developed based on case-control study and cohort study. Models developed in European and American regions and Asia (excluding China) only include common risk factors, while Chinese models also include hereditary factors on the bases of common risk factors. However, the development and verification of each model are mainly based on local population, whether it can be applied for other population need to be determined. This article reviews the development, validation and evaluation of the risk prediction models, in order to provide a basis for developing more precise risk prediction models for colorectal cancer.



Key wordsColorectal neoplasms/epidemiology      Forecasting      Models, statistical      Risk factors      Review     
Received: 04 January 2018      Published: 24 July 2018
CLC:  R181.2  
  R735.3  
Corresponding Authors: CHEN Tianhui     E-mail: jiangxy@zjams.com.cn;t.chen@zjams.com.cn
Cite this article:

JIANG Xiyi,LI Lu,TANG Huijuan,CHEN Tianhui. Multiple risk factors prediction models for high risk population of colorectal cancer. J Zhejiang Univ (Med Sci), 2018, 47(2): 194-200.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2018.04.14     OR     http://www.zjujournals.com/med/Y2018/V47/I2/194


结直肠癌高危人群多因素风险预测模型及评价

结直肠癌的发生是遗传因素和环境因素共同作用的结果。国内外学者已尝试建立多种结直肠癌风险预测模型用于识别危险因素、筛选高危人群及评估发病风险,从而为不同风险人群提供个性化的筛查方案,有效降低结直肠癌的发病率和病死率。现有的典型结直肠癌风险预测模型的建立多基于病例对照研究和队列研究。欧美地区和亚洲地区(除中国外)模型仅纳入常见风险因素;中国的模型在常见风险因素的基础上,还纳入了遗传因素。然而,各模型的建立和验证多基于本地区人群,是否适用于外部人群尚待验证。本文就各种模型的建立、验证和评价进行综述,为进一步建立精确的风险预测模型提供依据。


关键词: 结直肠肿瘤/流行病学,  预测,  模型, 统计学,  危险因素,  综述 
模型 国别 模型验证方式 建模(研究设计,样本数/结直肠癌数) 验证(研究设计,样本数/结直肠癌数) 纳入的因素 模型预测价值(AUC/c指数)
“—”无相关数据;HPFS:健康专业人士随访研究;NHS:护士健康研究;a包括rs1983891、rs869736、rs3214050、rs10411210、rs3731055、rs231775、rs1412829、rs1572072、rs6983267、rs1799782、rs712221、rs160277、rs11721827、rs2736100、rs3135967、rs1760944;b包括rs647161、rs10505477、rs6983267、rs10795668、rs7229639、rs4939827、rs242327.
哈佛癌症风险指数模型[9-11] 美国 外部验证 文献查阅、总结归纳 队列研究HPFS队列:38 953/230;NHS队列:52 668/244 一级亲属结肠癌史、体质指数、筛查史(粪潜血试验、结肠镜检查)、阿司匹林使用史、炎性肠疾病史、叶酸摄入史、饮食(红肉、蔬菜、水果、纤维、脂肪)、吸烟、饮酒、身高、体力活动和雌激素替代治疗史 男性:0.71女性:0.67
Freedman模型[12-13] 美国 外部验证 病例对照研究病例:2263对照:2833 队列研究男:155 345/2093;女:108 057/832 男性:过去10年息肉史、一级亲属结直肠癌史、阿司匹林及非甾体抗炎药使用史、吸烟、体质指数、体力活动和蔬菜摄入;女性:结肠镜检查史、息肉史、一级亲属结直肠癌史、阿司匹林及非甾体抗炎药使用史、体力活动、蔬菜摄入、激素替代治疗史和绝经期雌激素暴露史 男性:0.61女性:0.61
Tao模型[14] 德国 外部验证 队列研究7891/107 横断面研究3519/29 性别、年龄、吸烟、一级亲属结肠癌史、饮酒、息肉史、红肉摄入、非甾体抗炎药使用史、结肠镜检查史 0.68
Imperiale模型[15] 印度 外部验证 横断面研究1994/67 横断面研究1031/15 年龄、性别、远端结肠病变 0.74
Ma模型[16] 日本 外部验证 队列研究28 115/543 队列研究18 256/389 年龄、体质指数、体力活动、吸烟、饮酒 0.64
Shin模型[17] 韩国 外部验证 队列研究男:846 559/6492;女:479 449/2655 队列研究男:547 874/3555女:415 875/1969 男性:年龄、身高、体质指数、空腹血糖、血清总胆固醇、肿瘤家族史、饮酒和肉类摄入;女性:年龄、身高、肿瘤家族史、空腹血糖和肉类摄入 男性:0.78女性:0.73
Cai模型[18] 中国 外部验证 队列研究5229/332 队列研究2312/147 性别、年龄、吸烟、糖尿病、绿色蔬菜、腌制食品、油炸食品和白肉摄入 0.74
Chen模型[19] 中国 内部验证 横断面研究905/48 自助抽样法 年龄、性别、冠心病、鸡蛋摄入、排便频率 0.75
Wang模型[20] 中国 内部验证 病例对照研究病例:218对照:315 五折交叉验证法 16个单核苷酸多态性位点a 0.72
李娇元模型[21] 中国 病例对照研究病例:1066对照:3880 性别、年龄、吸烟、饮酒、7个单核苷酸多态性位点b 0.59
Tab 1 Review of risk prediction models for colorectal cancer
[1]   FERLAY J , SOERJOMATARAM I , DIKSHIT R et al. Cancer incidence and mortality worldwide:Sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136 (5): E359- E386
doi: 10.1002/ijc.29210
[2]   CHEN W , ZHENG R , BAADE P D et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66 (2): 115- 132
doi: 10.3322/caac.21338
[3]   GONG J , HUTTER C , BARON J A et al. A pooled analysis of smoking and colorectal cancer:timing of exposure and interactions with environmental factors[J]. Cancer Epidemiol Biomarkers Prev, 2012, 21 (11): 1974- 1985
doi: 10.1158/1055-9965.EPI-12-0692
[4]   BOYLE T , FRITSCHI L , TABATABAEI S M et al. Smoking, alcohol, diabetes, obesity, socioeconomic status, and the risk of colorectal cancer in a population-based case-control study[J]. Cancer Causes Control, 2014, 25 (12): 1659- 1668
doi: 10.1007/s10552-014-0470-7
[5]   MA Y, YANG Y, WANG F, et al. Obesity and risk of colorectal cancer:a systematic review of prospective studies[J/OL]. PLoS One, 2013, 8(1):e53916.
[6]   AZEEM S , GILLANI S W , SIDDIQUI A et al. Diet and colorectal cancer risk in Asia-a systematic review[J]. Asian Pac J Cancer Prev, 2015, 16 (13): 5389- 5396
doi: 10.7314/APJCP.2015.16.13.5389
[7]   CHO E , LEE J E , RIMM E B et al. Alcohol consumption and the risk of colon cancer by family history of colorectal cancer[J]. Am J Clin Nutr, 2012, 95 (2): 413- 419
doi: 10.3945/ajcn.111.022145
[8]   SHROFF J , THOSANI N , BATRA S et al. Reduced incidence and mortality from colorectal cancer with flexible-sigmoidoscopy screening:a meta-analysis[J]. World J Gastroenterol, 2014, 20 (48): 18466- 18476
doi: 10.3748/wjg.v20.i48.18466
[9]   COLDITZ G A , ATWOOD K A , EMMONS K et al. Harvard report on cancer prevention volume 4:Harvard Cancer Risk Index. Risk Index Working Group, Harvard Center for Cancer Prevention[J]. Cancer Causes Control, 2000, 11 (6): 477- 488
doi: 10.1023/A:1008984432272
[10]   EMMONS K M , KOCH-WESER S , ATWOOD K et al. A qualitative evaluation of the Harvard Cancer Risk Index[J]. J Health Commun, 1999, 4 (3): 181- 193
doi: 10.1080/108107399126904
[11]   KIM D J , ROCKHILL B , COLDITZ G A . Validation of the Harvard Cancer Risk Index:a prediction tool for individual cancer risk[J]. J Clin Epidemiol, 2004, 57 (4): 332- 340
doi: 10.1016/j.jclinepi.2003.08.013
[12]   FREEDMAN A N , SLATTERY M L , BALLARD-BARBASH R et al. Colorectal cancer risk prediction tool for white men and women without known susceptibility[J]. J Clin Oncol, 2009, 27 (5): 686- 693
doi: 10.1200/JCO.2008.17.4797
[13]   PARK Y , FREEDMAN A N , GAIL M H et al. Validation of a colorectal cancer risk prediction model among white patients age 50 years and older[J]. J Clin Oncol, 2009, 27 (5): 694- 698
doi: 10.1200/JCO.2008.17.4813
[14]   TAO S , HOFFMEISTER M , BRENNER H . Development and validation of a scoring system to identify individuals at high risk for advanced colorectal neoplasms who should undergo colonoscopy screening[J]. Clin Gastroenterol H, 2014, 12 (3): 478- 485
doi: 10.1016/j.cgh.2013.08.042
[15]   IMPERIALE T F , WAGNER D R , LIN C Y et al. Using risk for advanced proximal colonic neoplasia to tailor endoscopic screening for colorectal cancer[J]. Ann Intern Med, 2003, 139 (12): 959- 965
doi: 10.7326/0003-4819-139-12-200312160-00005
[16]   MA E , SASAZUKI S , IWASAKI M et al. 10-year risk of colorectal cancer:development and validation of a prediction model in middle-aged Japanese men[J]. Cancer Epidemiol, 2010, 34 (5): 534- 541
doi: 10.1016/j.canep.2010.04.021
[17]   SHIN A, JOO J, YANGH R, et al. Risk prediction model for colorectal cancer: National Health Insurance Corporation study, Korea[J/OL]. PLoS One, 2014, 9(2): e88079.
[18]   CAI Q C , YU E D , XIAO Y et al. Derivation and validation of a prediction rule for estimating advanced colorectal neoplasm risk in average-risk Chinese[J]. Am J Epidemiol, 2012, 175 (6): 584- 593
doi: 10.1093/aje/kwr337
[19]   CHEN G , MAO B , PAN Q et al. Prediction rule for estimating advanced colorectal neoplasm risk in average-risk populations in southern Jiangsu Province[J]. Chin J Cancer Res, 2014, 26 (1): 4- 11
[20]   WANG H M , CHANG T H , LIN F M et al. A new method for post Genome-Wide Association Study (GWAS) analysis of colorectal cancer in Taiwan[J]. Gene, 2013, 518 (1): 107- 113
doi: 10.1016/j.gene.2012.11.067
[21]   李娇元, 常江, 朱颖 et al. 基于常见遗传变异和传统风险因素的中国南方汉族人群结直肠癌风险预测模型研究[J]. 中华流行病学杂志, 2015, 36 (10): 1053- 1057
LI Jiaoyuan , CHANG Jiang , ZHU Ying et al. Risk prediction of colorectal cancer with common genetic variants and conventional non-genetic factors in a Chinese Han population[J]. Chinese Journal of Epidemiology, 2015, 36 (10): 1053- 1057
doi: 10.3760/cma.j.issn.0254-6450.2015.10.003
[1] HU Linlin,ZHANG Ruiting,WANG Shuyue,HONG Hui,HUANG Peiyu,ZHANG Minming. Correlation of cardiovascular risk factors with brain iron deposition: A magnetic resonance imaging study[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 644-650.
[2] DU Xiaotian,OUYANG Hongwei. Correlation between histone methylation level and pathological development of osteoarthritis[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 682-687.
[3] LI Xue,LI Wenbin,FENG Shilan,WANG Rong. Research progress on mechanism in adaptation of hemoglobin to plateau hypoxia[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 674-681.
[4] ZHANG Sheng,HU Zhenjie,YE Lu,ZHENG Yaru. Application of Logistic regression and decision tree analysis in prediction of acute myocardial infarction events[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 594-602.
[5] DING Yidan,LI Wenbin,WANG Rong,ZHANG Jianchun. Research progress on the effects of plateau hypoxia on blood-brain barrier structure and drug permeability[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 668-673.
[6] KONG Limin,LU Jingyi,ZHU Huajian,ZHANG Jiankang. Research progress on selective immunoproteasome inhibitors[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 688-694.
[7] XU Jiajun,SHU Qiang. Application of 3D printing techniques in treatment of congenital heart disease[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 573-579.
[8] Mehmutjan Muzepper,ZHOU Min. Risk factors of pelvic ischemic symptoms after iliac artery occlusion during endovascular aneurysm repair[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 546-551.
[9] ZHANG Junhao,JIN Jinghua,YANG Wei. Autophagy regulates the function of vascular smooth muscle cells in the formation and rupture of intracranial aneurysms[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 552-559.
[10] CHEN Dianyu,QI Ming. Research progress on uniparental disomy in cancer[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 560-566.
[11] LIN Jing,CHEN Zhimin. Research progress on early identification of severe adenovirus pneumonia in children[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 567-572.
[12] GUO Danling,HU Hongjie,ZHAO Zhenhua,LYU Sangying,HUANG Yanan,JIANG Ruhong,PU Cailing,NI Hongxia. Value of myocardial scar in predicting malignant ventricular arrhythmia in patients with chronic myocardial infarction[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 511-516.
[13] CHEN Guangjie,WANG Xiaohao,TANG Daxing. Progress on evaluation, diagnosis and management of disorders of sex development[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 358-366.
[14] HUANG Shumin,ZHAO Zhengyan. Advances in newborn screening and immune system reconstitution of severe combined immunodeficiency[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 351-357.
[15] TAO Anyang, WANG Zhimin, CHEN Hongfang, XU Dongjuan, HU Haifang, WU Chenglong, ZHANG Xiaoling, MA Xiaodong, WANG Yaxian, HU Haitao, LOU Min, Improving In-hospital Stroke Service Utilisation (MISSION) in Zhejiang Province . Association of atrial fibrillation with hemorrhagic transformation after intravenous thrombolysis in patients with ischemic stroke[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 254-259.