Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (2): 111-117    DOI: 10.3785/j.issn.1008-9292.2018.04.01
    
Risk assessment indexes for shellfish poisoning outbreak caused by red tide
YANG Shengxu1(),WEI Jingjiao2,HE Fan3,*()
1. Sanmen Center for Disease Control and Prevention, Taizhou 317199, Zhejiang Province, China
2. Department of Immunology, Wenzhou Center for Disease Control and Prevention, Wenzhou 325000, Zhejiang Province, China
3. Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
Download: HTML( 45 )   PDF(988KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To establish the indexes and weights of risk assessment of shellfish poisoning outbreak caused by red tide. Methods: The risk assessment indexes were developed with the methods of literature review, brainstorm and expert consultation, and the weights of indexes were calculated by the method of analytic hierarchy process. The established indexes contained the risk possibility, impacts of public health, population vulnerability and resilience. The relative risk indexes(integrated risk indexes) of different shellfish poisoning were computed by combining hierarchy process and TOPSIS methods. Moreover, the weights of indexes were further used to generate absolute risk values by multiplying indexes. Results: Four primary indexes and 17 secondary indexes were identified for risk assessment of shellfish poisoning outbreak. Of 17 secondary indexes, the knowing rate of shellfish poisoning, medical accessibility, the number of people being affected, laboratory testing capacity and the habits of eating seafood of local residents had relatively large weights (0.0876, 0.0840, 0.0716, 0.0703 and 0.0644, respectively), which accounted for nearly 38% of the total weight. All consistency ratio (CR) were less than 0.1. The index system was applied in Cangnan county of Zhejiang province. The results showed the relative risk indexes of paralytic shellfish poisoning (PSP), diarrhetic shellfish poisoning (DSP), neurotoxic shellfish poisoning (NSP) and amnesic shellfish poisoning (ASP) were 0.4526, 0.7116, 0.1657 and 0.2884, and the absolute risk values were 0.2542, 0.2668, 0.1907 and 0.2184, respectively. The risk orders of the 4 kinds of shellfish poisoning sorted by relative risk indexes and absolute risk values were consistent. Conclusion: The indexes and weights of risk assessment of shellfish poisoning outbreak caused by red tide are established, which can provide scientific advice for prevention and control of shellfish poisoning outbreak.



Key wordsShellfish      Toxins, biological      Risk assessment      Vital statistics      Public health     
Received: 28 February 2018      Published: 24 July 2018
CLC:  R18  
Corresponding Authors: HE Fan     E-mail: yangsx001@126.com;fhe@cdc.zj.cn
Cite this article:

YANG Shengxu,WEI Jingjiao,HE Fan. Risk assessment indexes for shellfish poisoning outbreak caused by red tide. J Zhejiang Univ (Med Sci), 2018, 47(2): 111-117.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2018.04.01     OR     http://www.zjujournals.com/med/Y2018/V47/I2/111


赤潮所致贝类毒素中毒事件风险评估指标体系及应用研究

目的: 构建赤潮所致贝类毒素中毒事件风险评估指标体系和权重。方法: 从风险发生的可能性、风险发生后的公共卫生影响、人群脆弱性和应对能力四个方面,利用文献复习法、头脑风暴法和专家咨询法系统梳理风险评估指标体系,用层次分析法计算指标权重,并将权重与TOPSIS法相结合,计算相对风险指数(风险综合指数);制订统一的赋值标准,根据指标实际值重新赋值后,计算绝对风险分值。结果: 共确定了赤潮所致贝类毒素中毒事件风险的4个一级指标和17个二级指标,17个二级指标中权重值较大的是赤潮毒素相关信息人群知晓率(0.0876)、就医可及性(0.0840)、可能波及人数(0.0716)、当地实验室检测能力(0.0703)、海产品食用习惯(0.0644),这5个指标约占总权重的38%。专家评分矩阵的一致性检验统计量CR值均小于0.1。以温州市苍南县开展应用性研究,麻痹性、腹泻性、神经性和记忆缺失性四种贝类毒素中毒事件的相对风险指数分别为0.4526、0.7116、0.1657、0.2884,绝对风险分值分别为0.2542、0.2668、0.1907、0.2184,两种计算方法所得的风险顺位一致。结论: 建立了赤潮所致贝类毒素中毒事件风险评估指标体系和权重,为防范和降低贝类毒素中毒事件发生的风险提供了科学手段。


关键词: 贝类,  毒素类, 生物学,  风险评估,  生命统计,  公共卫生 
一级指标 二级指标 权重 指标说明和赋值
B1风险发生的可能性 C1发生有毒赤潮的次数 0.0448 近十年年均次数:0次=0,少于0.5次=0.34,0.5~1次=0.67,多于1次=1.0
C2养殖海产品种类、面积、产量 0.0566 近十年若无可蓄积毒素的海产养殖,风险为0(不考虑外来海产因素);有该海产养殖,根据人均产量确定风险大小,以上一年度浙江省人均海产品消费量为标准,人均产量低于人均海产品消费量取值0.33,超过人均海产品消费量但低于人均海产品消费量的1.5倍取值0.67,超过人均海产品消费量的1.5倍取值1.0
C3可蓄积赤潮毒素海产品销售量 0.0364 近十年人均销售量低于当地该海产品产量平均值取值0.33,超过当地该海产品产量平均值但低于平均值的1.5倍取值0.67,超过当地该海产品产量平均值的1.5倍取值1.0
C4海产品带毒监测 0.0547 近十年本地海产品带毒阳性率(%)按实际大小取值,不另外赋值
C5既往发生赤潮毒素中毒事件 0.0489 近十年赤潮毒素中毒事件发生情况:无取值0,有取值1
B2公共卫生影响 C6赤潮期可疑赤潮毒素中毒发病率 0.0579 调查近三年5至10月与海产品食用有关的腹泻及相关症状的人群平均罹患率,低于5%取值0.33, 5%~10%取值0.67,高于10%取值1
C7病死率 0.0554 通过既往发生赤潮毒素中毒事件、国内外已发表有关赤潮毒素中毒事件的文献获得病死率,几乎无死亡取值0,可能引起死亡取值0.5,可有死亡取值1.0
C8可能波及人数 0.0716 无事件发生取值0;事件发生在集体单位:局限在该集体单位取值0.5,向集体单位外蔓延取值1.0;事件发生在社区:波及少部分家庭(<10%)取值0.5,否则取值1.0
C9社会关注程度 0.0514 近三年关键词“赤潮”和“赤潮毒素”的百度搜索指数平均值进行叠加,根据经验以1000为高度关注,达到或超过1000时取值1,不足1000按比例计算
B3人群脆弱性C10赤潮毒素相关信息人群知晓率 0.0876 包括赤潮发生时间、原因、对健康的危害等共计10个问题组成,满分10分,利用平均得分计算得分率
C11海产品食用习惯 0.0644 没有食用海鲜的习惯取值0;对于有食用海鲜习惯者,进一步细分为三个问题:频次(每天都吃取值1.0,4~5次/周取值0.8,2~3次/周取值0.6,1次/周取值0.4,少于1次/周取值0.2),类型(新鲜海产品取值1.0、新鲜海产品+干货类取值0.5),食用贝类产品时是否去除内脏(是取值0、否取值1.0),将上述三个问题得分求和后除以3即为每个人的得分,将每个人的得分取平均值作为人群的海产品食用习惯
C12就医可及性 0.0840 以居住点附近是否有医疗点和就医方便程度作为衡量指标,居住点附近无医疗点且就医不方便者取值1.0,附近有医疗点或就医方便者取值0
B4应对能力C13海洋部门有无赤潮监测 0.0544 有监测取值0,无监测取值1.0
C14有无应对预案 0.0581 有预案取值0,无预案取值1.0
C15卫生应急能力 0.0450 评估体系建设、应急队伍、装备储备、培训演练、宣教科研、监测预警、应急处置和善后八大方面,满分1000,以(1000-得分)/1000为其分值
C16当地实验室检测能力 0.0703 具备检测能力取值0,不具备检测能力取值1
C17贝类毒素食品安全风险监测预警机制 0.0584 有预警机制取值0,无预警机制取值1
Tab 1 Risk assessment indexes for shellfish poisoning outbreak caused by red tide
一级指标 二级指标 TOPSIS法经归一化处理的加权判断矩阵 绝对风险分值(按标准赋值后×权重)
麻痹性 腹泻性 神经性 记忆缺失性 麻痹性 腹泻性 神经性 记忆缺失性
“—”无相关数据.
B1风险发生的可能性 C1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
C2 0.0283 0.0283 0.0283 0.0283 0.0192 0.0192 0.0192 0.0192
C3 0.0182 0.0182 0.0182 0.0182 0.0124 0.0124 0.0124 0.0124
C4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
C5 0.0000 0.0489 0.0000 0.0000 0.0000 0.0489 0.0000 0.0000
B2公共卫生影响C6 0.0000 0.0579 0.0000 0.0000 0.0000 0.0191 0.0000 0.0000
C7 0.0369 0.0000 0.0185 0.0369 0.0554 0.0000 0.0277 0.0554
C8 0.0506 0.0506 0.0000 0.0000 0.0358 0.0358 0.0000 0.0000
C9 0.0257 0.0257 0.0257 0.0257 0.0148 0.0148 0.0148 0.0148
B3人群脆弱性C10 0.0438 0.0438 0.0438 0.0438 0.0792 0.0792 0.0792 0.0792
C11 0.0322 0.0322 0.0322 0.0322 0.0306 0.0306 0.0306 0.0306
C12 0.0420 0.0420 0.0420 0.0420 0.0055 0.0055 0.0055 0.0055
B4应对能力C13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
C14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
C15 0.0225 0.0225 0.0225 0.0226 0.0013 0.0013 0.0013 0.0013
C16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
C17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
相对风险指数或绝对风险分值 0.4526 0.7116 0.1657 0.2884 0.2542 0.2668 0.1907 0.2184
风险顺位 2 1 4 3 2 1 4 3
Tab 2 Risk of shellfish poisoning outbreak caused by red tide in Cangnan, Wenzhou, China, 2015
[1]   马敬军, 曾名勇, 周德庆 . 贝类毒素检验及排除方法的研究进展[J]. 中国海洋药物, 2003, 22 (6): 41- 45
MA Jingjun , ZENG Mingyong , ZHOU Deqing . Advances in methods of assay and detoxification of shellfish poisons[J]. Chinese Journal of Marine Drugs, 2003, 22 (6): 41- 45
[2]   李淑冰, 李惠珍, 许旭萍 . 贝毒素的研究现状及产生源探究[J]. 食品科学, 2000, 21 (5): 39- 41
LI Shubing , LI Huizhen , XU Xuping . Primary study on present status of shellfish toxicity and its source[J]. Food Science, 2000, 21 (5): 39- 41
[3]   ZHOU M J , LI J , LUCKAS B et al. A recent shellfish toxin investigation in China[J]. Mar Poll Bull, 1999, 39 (2): 331- 334
[4]   郑仁锦, 李榕珊, 黄宏南 et al. 福建省市售水产品中河豚毒素及腹泻性贝类毒素污染状况[J]. 职业与健康, 2016, 32 (17): 2367- 2370
ZHENG Renjin , LI Rongshan , HUANG Hongnan et al. Pollution status of tetrodotoxin and diarrhetic shellfish toxin in commercially available aquatic products in Fujian Province[J]. Occupation and Health, 2016, 32 (17): 2367- 2370
[5]   彭荣飞, 李晓晶, 于鸿 et al. 广东省经济贝类中多种贝类毒素的监测分析[J]. 中国卫生检验杂志, 2014, 24 (21): 3129- 3131
PENG Rongfei , LI Xiaojing , YU Hong et al. Monitoring and analysis of shellfish toxins in shellfish aquatic products in Guangdong province[J]. Chinese Journal of Health Laboratory Technology, 2014, 24 (21): 3129- 3131
[6]   CHEN T, XU X, WEI J, et al. Food-borne disease outbreak of diarrhetic shellfish poisoning due to toxic mussel consumption: the first recorded outbreak in China[J/OL]. PLoS One, 2013, 8(5): e65049.
[7]   林时辉, 涂文校, 欧剑鸣 . 一起进食紫贻贝引起腹泻性贝类毒素中毒的爆发调查[J]. 热带病与寄生虫学, 2015, 13 (3): 159- 161
LIN Shihui , TU Wenxiao , OU Jianming et al. Investigation on a diarrheic shellfish poisoning incident by ingestion of blue mussels[J]. Journal of Tropical Disease and Parasitology, 2015, 13 (3): 159- 161
[8]   周洁, 周志峰, 邓凯杰 et al. 一起贝类毒素引发的食物中毒[J]. 职业与健康, 2013, 29 (16): 2025- 2026, 2029
ZHOU Jie , ZHOU Zhifeng , DENG Kaijie et al. A food poisoning caused by shellfish toxins[J]. Occupation and Health, 2013, 29 (16): 2025- 2026, 2029
[9]   中国疾病预防控制中心. 突发事件公共卫生风险评估技术方案(试行)[EB/OL]. (2017-08-10)[2018-02-10]. http://www.chinacdc.cn/jkzt/tfggwssj/ynlddzjzfb_10023/yskzjzjszn_10032/201708/t20170810_149318.html.
Chinese Center for Disease Control and Prevention. Technical proposal on risk assessment for public health in emergencies (trial implementation)[EB/OL]. (2017-08-10)[2018-02-10]. http://www.chinacdc.cn/jkzt/tfggwssj/ynlddzjzfb_10023/yskzjzjszn_10032/201708/t20170810_149318.html. (in Chinese)
[10]   张炜琪, 苌凤水, 孙梅 et al. 应用层次分析法确定我国疾病预防控制绩效考核指标体系权重[J]. 中国卫生资源, 2012, 15 (1): 14- 15, 35
ZHANG Weiqi , CHANG Fengshui , SUN Mei et al. Setting the weight of the indicators in performance evaluation of the disease control and prevention system:the application of analytic hierarchy process[J]. Chinese Health Resources, 2012, 15 (1): 14- 15, 35
[11]   陈治宏, 卢国明, 吴晓华 et al. 基于AHP的群决策风险评估方法[J]. 计算机应用, 2009, 29 125- 127, 145
CHEN Zhihong , LU Guoming , WU Xiaohua et al. Risk assessment method for group decision-making with AHP[J]. Journal of Computer Applications, 2009, 29 125- 127, 145
[12]   陈萌 . TOPSIS法与层次分析法在医疗质量分析中的应用比较[J]. 中国医药指南, 2009, 7 (7): 111- 112
CHEN Meng . Comparison on TOPSIS and analytic hierarchy process methods for analyzing the medical quality[J]. Guide of China Medicine, 2009, 7 (7): 111- 112
[13]   于秀金, 张皓斐 . 一种将AHF和TOPSIS融合的决策方法[J]. 电脑与信息技术, 2010, 18 (6): 28- 31, 77
YU Xiujin , ZHANG Haofei . The integration about AHP and TOPSIS to Implement Decision-making[J]. Computer and Information Technology, 2010, 18 (6): 28- 31, 77
[14]   方曦, 李娜, 葛月凤 . 基于AHP与TOPSIS方法的中文搜索引擎评价体系[J]. 科技导报, 2012, 30 (14): 49- 54
FANG Xi , LI Na , GE Yuefeng et al. Evaluation system for Chinese search engines based on the AHP-TOPSIS[J]. Science & Technology Review, 2012, 30 (14): 49- 54
doi: 10.3981/j.issn.1000-7857.2012.14.006
[15]   国家海洋局. 中国海洋环境状况公报[EB/OL]. [2018-02-10]. http://www.soa.gov.cn/zwgk/hygb/.
State Oceanic Administration, People's Republic of China. Bulletin on the state of China's Marine environment[EB/OL]. [2018-02-10]. http://www.soa.gov.cn/zwgk/hygb/. (in Chinese)
[16]   Scoging A C . Illness associated with seafood[J]. CDR(Lond Engl Rev), 1991, 1 (11): R117- R122
[17]   袁骐 . 舟山渔场及其邻近海域腹泻性贝类毒素的初步研究[J]. 水产学报, 2002, 26 (6): 528- 532
YUAN Qi . The preliminary study of diarrhetic shellfish poison in Zhoushan fishing ground and its adjacent area[J]. Journal of fisheries of China, 2002, 26 (6): 528- 532
[1] CHEN Rong,HE Yongchao,ZHANG Fang,LU Yinhao,HE Yi. Establishing assessment indexes for emergency response capability of disease control and prevention institutions[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 137-142.
[2] QI Xiaohua,WANG Xinyi,HE Fan,LIU Biyao,ZHANG Tao,LI Fudong,ZHAI Yujia,LIN Junfen. Risk assessment for emergency events of infectious disease in outlying areas of large-scale activities[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 124-130.
[3] YANG Tao,LI Fudong,HE Fan. Semi-quantitative risk assessment of human infection with H7N9 avian influenza epidemic in Zhejiang province[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 131-136.
[4] WU Jiabing,GONG Lei,CHEN Fang,SONG Dandan,MA Wanwan,HOU Sai. Establishment and application of public health risk assessment indexes for flood disaster[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 118-123.
[5] . Epidemiology of Ebola virus disease[J]. J Zhejiang Univ (Med Sci), 2014, 43(6): 621-645.
[6] . Extraction and purification of acidic polysaccharide from Moerella iridescens[J]. J Zhejiang Univ (Med Sci), 2012, 41(5): 569-575.