Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (1): 104-109    DOI: 10.3785/j.issn.1008-9292.2018.02.15
Methodology for survival assessment of cancer patients using population-based cancer registration data
TANG Huijuan(),JIANG Xiyi(),LOU Jianlin,CHEN Tianhui*()
Group of Molecular Epidemiology & Cancer Precision Prevention, Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
Download: HTML( 8 )   PDF(1288KB)
Export: BibTeX | EndNote (RIS)      


Evaluating and monitoring long-term survival of cancer patients and reporting the survival rate are routinely employed by cancer registries. Long-term survival rate is a necessary indicator in evaluating the effect of cancer therapy and cancer burden. Cohort method is a traditional approach for survival analysis, but it essentially reflects the survival expectations of patients diagnosed many years ago, therefore survival status of cancer patients was often disclosed with delay. Given the limitation of cohort method, period analysis and model-based period analysis are subsequently proposed and gradually applied in assessment of survival rates in recent years. Period analysis includes the patients of interest period, which reflects more up-to-date estimates of long-term survival of cancer patients. While model-based period analysis can use the existing data to calculate survival rates and to assess the trend, and predict survival rates in the future. Compared with cohort approach, period analysis and model-based period analysis are better in timeliness and precision in survival analysis. This article reviews the definition and theory, calculation and application of cohort method, period analysis and model-based period analysis, in order to provide a basis on up-to-date and precise assessment of survival rates of cancer patients.

Key wordsNeoplasms      Registries      Survival analysis      Cohort studies      Periodicity      Evaluation studies      Review     
Received: 10 December 2017      Published: 12 June 2018
CLC:  R181.2  
Corresponding Authors: CHEN Tianhui     E-mail:;;
Cite this article:

TANG Huijuan,JIANG Xiyi,LOU Jianlin,CHEN Tianhui. Methodology for survival assessment of cancer patients using population-based cancer registration data. J Zhejiang Univ (Med Sci), 2018, 47(1): 104-109.

URL:     OR



关键词: 肿瘤,  登记,  存活率分析,  队列研究,  周期性,  评价研究,  综述 
Tab 1 Illustration of cohort and period analysis
Tab 2 Illustration of model-based period analysis
[1]   ZENG H , ZHENG R , GUO Y et al. Cancer survival in China, 2003-2005:a population-based study[J]. Int J Cancer, 2015, 136 (8): 1921- 1930
doi: 10.1002/ijc.29227
[2]   CHEN W , ZHENG R , BAADE P D et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66 (2): 115- 132
doi: 10.3322/caac.21338
[3]   LUO J , XIAO L , WU C et al. The incidence and survival rate of population-based pancreatic cancer patients:Shanghai Cancer Registry 2004-2009[J]. PLoS One, 2013, 8 (10): e76052
doi: 10.1371/journal.pone.0076052
[4]   BRENNER H , FRANCISCI S , DE ANGELIS R et al. Long-term survival expectations of cancer patients in Europe in 2000-2002[J]. Eur J Cancer, 2009, 45 (6): 1028- 1041
doi: 10.1016/j.ejca.2008.11.005
[5]   SANT M , ALLEMANI C , BERRINO F et al. Breast carcinoma survival in Europe and the United States[J]. Cancer, 2004, 100 (4): 715- 722
doi: 10.1002/cncr.v100:4
[6]   项永兵 . 肿瘤流行病学研究资料的统计分析[J]. 中华流行病学杂志, 1999, 19 (3): 180- 183
XIANG Yongbing . Statistical analysis of epidemiological data on cancer[J]. Chinese Journal of Epidemiology, 1999, 19 (3): 180- 183
[7]   BRENNER H , GEFELLER O . An alternative approach to monitoring cancer patient survival[J]. Cancer, 1996, 78 (9): 2004- 2010
doi: 10.1002/(ISSN)1097-0142
[8]   BRENNER H , GEFELLER O , HAKULINEN T . A computer program for period analysis of cancer patient survival[J]. Eur J Cancer, 2002, 38 (5): 690- 695
doi: 10.1016/S0959-8049(02)00003-5
[9]   张华, 曹志刚, 柳光宇 et al. 队列法、完全法和现时生存分析方法在乳腺癌随访研究中的应用[J]. 肿瘤, 2014, 34 (6): 550- 556
ZHANG Hua , CAO Zhigang , LIU Guangyu et al. Use of cohort analysis, complete analysis and period analysis in estimating long-term survival of breastcancer[J]. Tumor, 2014, 34 (6): 550- 556
doi: 10.3781/j.issn.1000-7431.2014.06.012
[10]   BRENNER H , S?DERMAN B , HAKULINEN T . Use of period analysis for providing more up-to-date estimates of long-term survival rates:empirical evaluation among 370, 000 cancer patients in Finland[J]. Int J Epidemiol, 2002, 31 (2): 456- 462
doi: 10.1093/intjepid/31.2.456
[11]   BRENNER H , HAKULINEN T . Up-to-date and precise estimates of cancer patient survival:model-based period analysis[J]. Am J Epidemiol, 2006, 164 (7): 689- 696
doi: 10.1093/aje/kwj243
[12]   BRENNER H , HAKULINEN T . Maximizing the benefits of model-based period analysis of cancer patient survival[J]. Cancer Epidemiol Biomarkers Prev, 2007, 16 (8): 1675- 1681
doi: 10.1158/1055-9965.EPI-06-1046
[13]   BRENNER H , GONDOS A , PULTE D . Expected long-term survival of patients diagnosed with multiple myeloma in 2006-2010[J]. Haematologica, 2009, 94 (2): 270- 275
doi: 10.3324/haematol.13782
[14]   GONDOS A , BRAY F , BREWSTER D H et al. Recent trends in cancer survival across Europe between 2000 and 2004:a model-based period analysis from 12 cancer registries[J]. Eur J Cancer, 2008, 44 (10): 1463- 1475
doi: 10.1016/j.ejca.2008.03.010
[15]   GONDOS A , BRAY F , HAKULINENT et al. Trends in cancer survival in 11 European populations from 1990 to 2009:a model-based analysis[J]. Ann Oncol, 2009, 20 (3): 564- 573
[16]   GONDOS A , HOLLECZEK B , ARNDT V et al. Trends in population-based cancer survival in Germany:to what extent does progress reach older patients?[J]. Ann Oncol, 2007, 18 (7): 1253- 1259
doi: 10.1093/annonc/mdm126
[17]   GONDOS A , KRILAVICIUTE A , SMAILYTE G et al. Cancer surveillance using registry data:Results and recommendations for the Lithuanian national prostate cancer early detection programme[J]. Eur J Cancer, 2015, 51 (12): 1630- 1637
doi: 10.1016/j.ejca.2015.04.009
[18]   SIRRI E , CASTRO F A , KIESCHKE J et al. Recent trends in survival of patients with pancreatic cancer in germany and the United States[J]. Pancreas, 2016, 45 (6): 908- 914
doi: 10.1097/MPA.0000000000000588
[19]   BRENNER H , GONDOS A , ARNDT V . Recent major progress in long-term cancer patient survival disclosed by modeled period analysis[J]. J Clin Oncol, 2007, 25 (22): 3274- 3280
doi: 10.1200/JCO.2007.11.3431
[20]   马雅婷, 连士勇, 刘志才 et al. 河南省林州市食管癌人群现时生存分析[J]. 中华预防医学杂志, 2009, 43 (12): 1100- 1104
MA Yating , LIAN Shiyong , LIU Zhicai et al. Period survival analysis of esophageal cancer in Linzhou city of Henan province[J]. Chinese Journal of Preventive Medicine, 2009, 43 (12): 1100- 1104
doi: 10.3760/cma.j.issn.0253-9624.2009.12.012
[21]   马雅婷, 连士勇, 刘志才 et al. 河南省林州市人群胃癌的现时生存分析[J]. 肿瘤, 2009, 29 (7): 650- 653
MA Yating , LIAN Shiyong , LIU Zhicai et al. Period survival analysis of stomach cancer in the population of Linzhou city of Henan province[J]. Tumor, 2009, 29 (7): 650- 653
[22]   张欣峰, 娄清涛, 陆建邦 et al. 现时生存分析方法的应用实践与评价[J]. 中国卫生统计, 2011, 28 (1): 26- 28
ZHANG Xinfeng , LOU Qingtao , LU Jianbang et al. The application and evaluation of period survival analysis[J]. Chinese Journal of Health Statistics, 2011, 28 (1): 26- 28
[1] CHEN Rong, HE Yongchao, ZHANG Fang, LU Yinhao, HE Yi. Establishing assessment indexes for emergency response capability of disease control and prevention institutions[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 137-142.
[2] JIANG Xiyi, LI Lu, TANG Huijuan, CHEN Tianhui. Multiple risk factors prediction models for high risk population of colorectal cancer[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 194-200.
[3] PAN Zongfu, FANG Qilu, ZHANG Yiwen, LI Li, HUANG Ping. Identification of key pathways and drug repurposing for anaplastic thyroid carcinoma by integrated bioinformatics analysis[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 187-193.
[4] YANG Tao, LI Fudong, HE Fan. Semi-quantitative risk assessment of human infection with H7N9 avian influenza epidemic in Zhejiang province[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 131-136.
[5] HE Yuxian, ZHENG Liangrong. Effect of spinal cord stimulation on myocardial ischemia/infarction[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 201-206.
[6] LYU Dandan, YING Kejing. Regulatory role of autophagy in development of pulmonary artery hypertension[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 207-212.
[7] JIANG Yanqi, YANG Yalan, YANG Ting, LI Yueling, CHEN Liling, YAN Jin, YANG Yanfang. Association of UCP2 rs659366 polymorphisms with the outcomes of patients after surgery for colorectal cancer[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 143-149.
[8] LING Jing,LI Hongrui,CHEN Weilin. Protein ubiquitination on the regulation of inflammatory bowel disease[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 82-88.
[9] DING Jingjing,LU Yunbi. Research progress on receptor interacting proteins in inflammation[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 89-96.
[10] ZHANG Yuchuan,CHEN Wei. Regulatory effect of Vav1 on T cells and its relation to clinical diseases[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 75-81.
[11] WANG Jiajing,GU Haiying. Research progress on genotyping of Helicobacter pylori[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 97-103.
[12] FENG Mengyu,ZHANG Taiping,ZHAO Yupei. Present situation and prospect of enhanced recovery after surgery in pancreatic surgery[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 666-674.
[13] ZHU Ziyi,LI Zhijun,HE Zhengfu,WANG Yunzhen. Endoscopic trans-fistula drainage for gastroesophageal anastomotic fistula with para-fistula abscess after esophagectomy[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 637-642.
[14] CAO Yang,FENG Yadong,JIAO Chunhua,SHI Ruihua. Segmented biodegradable esophageal stents in a porcine model: preclinical evaluation of degradation, complications and tissue reactions[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 649-655.
[15] WANG Subo, ZHAO Zhenhua, HU Hongjie, YANG Jianfeng, ZHAO Li, YANG Liming, WANG Cheng. Application of dynamic-contrast enhanced magnetic resonance pharmacokinetic models in differential diagnosis of cellular uterine leiomyoma[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 498-504.