Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (1): 75-81    DOI: 10.3785/j.issn.1008-9292.2018.02.11
    
Regulatory effect of Vav1 on T cells and its relation to clinical diseases
ZHANG Yuchuan(),CHEN Wei*()
Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
Download: HTML( 7 )   PDF(1054KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Vav1, as a key downstream signaling molecule of T cell receptor, includes a catalytic core DH-PH-ZF domain with the function as guanine nucleotide exchange factor (GEF), and a SH3-SH2-SH3 domain with the function as adaptor protein. These two structures of Vav1 play different roles in the development, activation, proliferation and function of T cells, and thereby exert the different regulatory effect on the occurrence and development of autoimmune disease, graft rejection, cancer and other clinical conditions, implicating that Vav1 might be a potential therapeutic target for these diseases. This paper reviews the role of Vav1 in T cells and the occurrence of related diseases.



Key wordsT-lymphocytes/physiology      Guanine nucleotide exchange factors/physiology      Autoimmune diseases      Graft rejection      Lymphoma, T-cell      Review     
Received: 20 November 2017      Published: 12 June 2018
CLC:  R392  
Corresponding Authors: CHEN Wei     E-mail: alstraybird@163.com;chenwei566@zju.edu.cn
Cite this article:

ZHANG Yuchuan,CHEN Wei. Regulatory effect of Vav1 on T cells and its relation to clinical diseases. J Zhejiang Univ (Med Sci), 2018, 47(1): 75-81.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2018.02.11     OR     http://www.zjujournals.com/med/Y2018/V47/I1/75


Vav1对T细胞的调控作用及其与相关疾病的关系

Vav1作为T细胞受体下游的关键信号分子,拥有鸟苷酸交换因子功能的催化核心结构DH-PH-ZF和接头蛋白功能的SH3-SH2-SH3结构,因而在T细胞发育、活化、增殖和功能发挥等各个阶段,以及在自身免疫性疾病、移植排斥和肿瘤等发生、发展中具有不同的调控作用,可为临床治疗提供潜在靶点。本文综述了Vav1对T细胞的调控作用及其与相关疾病的关系。


关键词: T淋巴细胞/生理学,  鸟嘌呤核苷酸交换因子类/生理学,  自身免疫疾病,  移植物排斥,  淋巴瘤, T细胞,  综述 
Fig 1 Schematic diagram of Vav1
[1]   KATZAV S , MARTIN-ZANCA D , BARBACID M . vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoietic cells[J]. EMBO J, 1989, 8 (8): 2283- 2290
[2]   HENSKE E P , SHORT M P , JOZWIAK S et al. Identification of VAV2 on 9q34 and its exclusion as the tuberous sclerosis gene TSC1[J]. Ann Hum Genet, 1995, 59 (Pt 1): 25- 37
[3]   MOVILLA N , BUSTELO X R . Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins[J]. Mol Cell Biol, 1999, 19 (11): 7870- 7885
doi: 10.1128/MCB.19.11.7870
[4]   JAGODIC M , COLACIOS C , NOHRA R et al. A role for VAV1 in experimental autoimmune encephalomyelitis and multiple sclerosis[J]. Sci Transl Med, 2009, 1 (10): 10ra21
[5]   HAUBERT D , LI J , SAVELIEV A et al. Vav1 GEF activity is required for T cell mediated allograft rejection[J]. Transpl Immunol, 2012, 26 (4): 212- 219
doi: 10.1016/j.trim.2012.03.003
[6]   BUSTELO X R . Vav family exchange factors:an integrated regulatory and functional view[J]. Small GTPases, 2014, 5 (2): 9
[7]   KSIONDA O , SAVELIEV A , K?CHL R et al. Mechanism and function of Vav1 localisation in TCR signalling[J]. J Cell Sci, 2012, 125 (Pt 22): 5302- 5314
[8]   LI S Y , DU M J , WAN Y J et al. The N-terminal 20-amino acid region of guanine nucleotide exchange factor Vav1 plays a distinguished role in T cell receptor-mediated calcium signaling[J]. J Biol Chem, 2013, 288 (6): 3777- 3785
doi: 10.1074/jbc.M112.426221
[9]   MOVILLA N , DOSIL M , ZHENG Y et al. How Vav proteins discriminate the GTPases Rac1 and RhoA from Cdc42[J]. Oncogene, 2001, 20 (56): 8057- 8065
doi: 10.1038/sj.onc.1205000
[10]   RAMOS-MORALES F , ROMERO F , SCHWEIGHOFFER F et al. The proline-rich region of Vav binds to Grb2 and Grb3-3[J]. Oncogene, 1995, 11 (8): 1665- 1669
[11]   MARGOLIS B , HU P , KATZAV S et al. Tyrosine phosphorylation of vav proto-oncogene product containing SH2 domain and transcription factor motifs[J]. Nature, 1992, 356 (6364): 71- 74
doi: 10.1038/356071a0
[12]   SMITH-GARVIN J E , KORETZKY G A , JORDAN M S . T cell activation[J]. Annu Rev Immunol, 2009, 27 591- 619
doi: 10.1146/annurev.immunol.021908.132706
[13]   KASSEM S , GAUD G , BERNARD I et al. A natural variant of the T cell receptor-signaling molecule Vav1 reduces both effector T cell functions and susceptibility to neuroinflammation[J]. PLoS Genet, 2016, 12 (7): e1006185
doi: 10.1371/journal.pgen.1006185
[14]   HAN J , LUBY-PHELPS K , DAS B et al. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav[J]. Science, 1998, 279 (5350): 558- 560
doi: 10.1126/science.279.5350.558
[15]   SAVELIEV A , VANES L , KSIONDA O et al. Function of the nucleotide exchange activity of vav1 in T cell development and activation[J]. Sci Signal, 2009, 2 (101): ra83
[16]   COLACIOS C , CASEMAYOU A , DEJEAN A S et al. The p.Arg63Trp polymorphism controls Vav1 functions and Foxp3 regulatory T cell development[J]. J Exp Med, 2011, 208 (11): 2183- 2191
doi: 10.1084/jem.20102191
[17]   TYBULEWICZ V L , ARDOUIN L , PRISCO A et al. Vav1:a key signal transducer downstream of the TCR[J]. Immunol Rev, 2003, 192 42- 52
doi: 10.1034/j.1600-065X.2003.00032.x
[18]   KORN T , FISCHER K D , GIRKONTAITE I et al. Vav1-deficient mice are resistant to MOG-induced experimental autoimmune encephalomyelitis due to impaired antigen priming[J]. J Neuroimmunol, 2003, 139 (1-2): 17- 26
doi: 10.1016/S0165-5728(03)00128-0
[19]   BERNARD I , FOURNIé G J , SAOUDI A . Genomics studies of immune-mediated diseases using the BN-LEW rat model[J]. Methods Mol Biol, 2010, 597 389- 402
doi: 10.1007/978-1-60327-389-3
[20]   PEDROS C , GAUD G , BERNARD I et al. An epistatic interaction between Themis1 and Vav1 modulates regulatory T cell function and inflammatory bowel disease development[J]. J Immunol, 2015, 195 (4): 1608- 1616
doi: 10.4049/jimmunol.1402562
[21]   NANKIVELL B J , ALEXANDER S I . Rejection of the kidney allograft[J]. N Engl J Med, 2010, 363 (15): 1451- 1462
doi: 10.1056/NEJMra0902927
[22]   WECKBECKER G , BRUNS C , FISCHER K D et al. Strongly reduced alloreactivity and long-term survival times of cardiac allografts in Vav1-and Vav1/Vav2-knockout mice[J]. Transpl Int, 2007, 20 (4): 353- 364
doi: 10.1111/tri.2007.20.issue-4
[23]   WANG S , DIAO H , GUAN Q et al. Enhanced cardiac allograft survival by Vav1-Rac signaling blockade in a mouse model[J]. Transpl Immunol, 2007, 18 (1): 53- 61
doi: 10.1016/j.trim.2007.03.007
[24]   ABATE F , DA S A C , ZAIRIS S et al. Activating mutations and translocations in the guanine exchange factor VAV1 in peripheral T-cell lymphomas[J]. Proc Natl Acad Sci U S A, 2017, 114 (4): 764- 769
doi: 10.1073/pnas.1608839114
[25]   KATZAV S . Vav1:a Dr. Jekyll and Mr. Hyde protein-good for the hematopoietic system, bad for cancer[J]. Oncotarget, 2015, 6 (30): 28731- 28742
[26]   BARREIRA M , FABBIANO S , COUCEIRO J R et al. The C-terminal SH3 domain contributes to the intramolecular inhibition of Vav family proteins[J]. Sci Signal, 2014, 7 (321): ra35
doi: 10.1126/scisignal.2004993
[27]   ROSSMAN K L , DER C J , SONDEK J . GEF means go:turning on RHO GTPases with guanine nucleotide-exchange factors[J]. Nat Rev Mol Cell Biol, 2005, 6 (2): 167- 180
doi: 10.1038/nrm1587
[28]   ROBLES-VALERO J , LORENZO-MARTíN L F , MENACHO-MáRQUEZ M et al. A paradoxical tumor-suppressor role for the Rac1 exchange factor Vav1 in T cell acute lymphoblastic leukemia[J]. Cancer Cell, 2017, 32 (5): 608- 623.e9
doi: 10.1016/j.ccell.2017.10.004
[29]   PUI C H , ROBISON L L , LOOK A T . Acute lymphoblastic leukaemia[J]. Lancet, 2008, 371 (9617): 1030- 1043
doi: 10.1016/S0140-6736(08)60457-2
[30]   SARMENTO L M , BARATA J T . Therapeutic potential of Notch inhibition in T-cell acute lymphoblastic leukemia:rationale, caveats and promises[J]. Expert Rev Anticancer Ther, 2011, 11 (9): 1403- 1415
doi: 10.1586/era.11.73
[31]   ROBLES-VALERO J , LORENZO-MARTíN L F , FERNáNDEZ-PISONERO I et al. Rho guanosine nucleotide exchange factors are not such bad guys after all in cancera[J]. Small GTPases, 2018, 1- 7
[32]   AZIZI G , REZAEI N , KIAEE F et al. T-Cell Abnormalities in Common Variable Immunodeficiency[J]. J Investig Allergol Clin Immunol, 2016, 26 (4): 233- 243
doi: 10.18176/jiaci
[33]   PACCANI S R , BONCRISTIANO M , PATRUSSI L et al. Defective Vav expression and impaired F-actin reorganization in a subset of patients with common variable immunodeficiency characterized by T-cell defects[J]. Blood, 2005, 106 (2): 626- 634
doi: 10.1182/blood-2004-05-2051
[34]   FISCHER M B , HAUBER I , EGGENBAUER H et al. A defect in the early phase of T-cell receptor-mediated T-cell activation in patients with common variable immunodeficiency[J]. Blood, 1994, 84 (12): 4234- 4241
[1] JIANG Xiyi, LI Lu, TANG Huijuan, CHEN Tianhui. Multiple risk factors prediction models for high risk population of colorectal cancer[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 194-200.
[2] ZHENG Qi, LU Meiping. Focus on pediatric rheumatic and immune diseases[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 213-217.
[3] HE Yuxian, ZHENG Liangrong. Effect of spinal cord stimulation on myocardial ischemia/infarction[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 201-206.
[4] LYU Dandan, YING Kejing. Regulatory role of autophagy in development of pulmonary artery hypertension[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 207-212.
[5] ZHOU Haijin,XIA Ping,HU Xingyue. A case of neuromyelitis optica spectrum disorders complicated with systemic lupus erythematosus and thymoma[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 71-74.
[6] LING Jing,LI Hongrui,CHEN Weilin. Protein ubiquitination on the regulation of inflammatory bowel disease[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 82-88.
[7] DING Jingjing,LU Yunbi. Research progress on receptor interacting proteins in inflammation[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 89-96.
[8] TANG Huijuan,JIANG Xiyi,LOU Jianlin,CHEN Tianhui. Methodology for survival assessment of cancer patients using population-based cancer registration data[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 104-109.
[9] WANG Jiajing,GU Haiying. Research progress on genotyping of Helicobacter pylori[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 97-103.
[10] FENG Mengyu,ZHANG Taiping,ZHAO Yupei. Present situation and prospect of enhanced recovery after surgery in pancreatic surgery[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 666-674.
[11] XU Jingjing, TAN Yanbin, ZHANG Minming. Medical imaging in tumor precision medicine: opportunities and challenges[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 455-461.
[12] PAN Jingying, HE Mengye, KE Wei, HU Menglin, WANG Meifang, SHEN Peng. Advances on correlation of PET-CT findings with breast cancer molecular subtypes, treatment response and prognosis[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 473-480.
[13] ZHANG Siying, CHEN Feng. Research progress of CT/MRI parametric response map in precision evaluation of therapeutic response of cancer patients[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 468-472.
[14] PAN Yao, CHEN Jieyu, YU Risheng. Accurate imaging diagnosis and evaluation of pancreatic cancer[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 462-467.
[15] WANG Mengyan, ZHU Biao. Research progress on genes mutations related to sulfa drug resistance in Pneumocystis jirovecii[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 563-569.