Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (1): 35-40    DOI: 10.3785/j.issn.1008-9292.2018.02.05
    
TLR/NF-κB independent signaling pathway in TNF-α suppression of diabetic MyD88-knockout mice after Lycium barbarum polysaccharides administration
LIU Tingting(),WANG Lingxiao,YANG Xiaohui,YAO Zhiqing,CAI Huizhen*()
School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
Download: HTML( 13 )   PDF(1031KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To investigate the effect of Lycium barbarum polysaccharides (LBPs) on TLR/NF-κB independent pathway and serum tumor necrosis factor (TNF-α) level in diabetic MyD88-knockout mice. Methods: Diabetes was induced by feeding high-fat/high-sugar diet and injection of low-dose streptozotocin in MyD88-knockout mice. The diabetic mice were randomly divided into model group, positive control group and LBPs group. The expressions of TRAM, TRIF, TRAF6, RIP1 and TNF-α mRNA and proteins in mouse peritoneal macrophages were detected by real-time RT-PCR and Western blotting after LBPs treatment for 3 month. Serum TNF-α was determined with ELISA kit. Results: Real time RT-PCR showed that compared with model group, the relative expressions of Tram, Trif, Traf6 and Tnf-α mRNA in macrophages of LBPs group were significantly decreased and expression of Rip1 was significantly increased (all P < 0.05). Expression of TRAM, TRIF, TRAF6, RIP1 and TNF-α proteins as well as serum TNF-α level had no significant difference between LBPs group and model group (all P > 0.05). Conclusion: LBPs may not inhibit serum TNF-α level through TLR/NF-κB independent pathway.



Key wordsMyeloid differentiation factor 88/physiology      Signal transduction      Tumor necrosis factor-alpha/biosynthesis      Polysaccharides/pharmacology      Lycium barbarum/chemistry      Diabetes mellitus, type 2      Disease models, animal      Cells, cultured     
Received: 03 December 2017      Published: 12 June 2018
CLC:  R96  
Corresponding Authors: CAI Huizhen     E-mail: 18695272282@163.com;xingcao_c@sina.com
Cite this article:

LIU Tingting,WANG Lingxiao,YANG Xiaohui,YAO Zhiqing,CAI Huizhen. TLR/NF-κB independent signaling pathway in TNF-α suppression of diabetic MyD88-knockout mice after Lycium barbarum polysaccharides administration. J Zhejiang Univ (Med Sci), 2018, 47(1): 35-40.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2018.02.05     OR     http://www.zjujournals.com/med/Y2018/V47/I1/35


MyD88非依赖性信号通路在枸杞多糖抑制糖尿病小鼠肿瘤坏死因子α中的作用

目的: 研究枸杞多糖对髓样分化因子88(MyD88)非依赖性信号通路的影响,探讨枸杞多糖影响TNF-α生成的机制。方法: 采用高糖高脂饲料联合链脲菌素诱导MyD88基因敲除小鼠形成2型糖尿病模型。将造模成功的小鼠随机分为模型对照组、阳性对照组和枸杞多糖组,另取8只小鼠作为健康对照组。干预三个月后,采用实时定量RT-PCR和蛋白质印迹法检测小鼠腹腔巨噬细胞中TRAM、TRIF、TRAF6、RIP1和TNF-α基因和蛋白表达,ELISA法测定小鼠血清TNF-α水平。结果: 枸杞多糖抑制了糖尿病小鼠腹腔巨噬细胞中TramTrifTraf6Tnf-α的基因表达,激活了Rip1基因(均P < 0.05),但对TRAM、TRIF、TRAF6、RIP1和TNF-α蛋白表达和血清TNF-α水平无影响(均P > 0.05)。结论: 枸杞多糖可能不能通过MyD88非依赖性信号通路抑制TNF-α的生成。


关键词: 髓样分化因子88/生理学,  信号传导,  肿瘤坏死因子α/生物合成,  多糖类/药理学,  枸杞/化学,  糖尿病, 2型,  疾病模型, 动物,  细胞, 培养的 
基因名称 引物序列(5′→3′) 片段大小
(bp)
Tram 正向:GTTTGCTCAGTGCGAGAGGA
反向:ATTCAGTTAGCTGGGAAGTGGT
70
Trif 正向:CACGATCCTGCTCCTGACTG
反向:CTGTGGAGCAGTCTGGTTGT
174
Rip1 正向:CTACCGGGTGTCAGGAATCA
反向:CAAGCCTCTTCAAACCGGGG
183
Traf6 正向:TCATTATGATCTGGACTGCCCAAC
反向:TTATGAACAGCCTGGGCCAAC
150
Tnf-α 正向:AAGAGGCACTCCCCCAAAAG
反向:GTGGTTTGTGAGTGTGAGGGT
209
Actin 正向:CATCCGTAAAGACCTCTATGCCAAC
反向:ATGGAGCCACCGATCCACA
171
Tab 1 Primer sequences for real-time RT-PCR
($\bar x \pm s$)
组别 Trif Tram Traf6 Rip1 Tnf-α
  *与健康对照组比较,P < 0.05;#与模型对照组比较,P < 0.05;与阳性对照组比较,P < 0.05.Trif:β干扰素Toll/IL-1R结构域衔接蛋白;Tram:TRIF相关接头分子;Traf6:肿瘤坏死因子受体相关因子6;Rip1:受体相互作用蛋白1.
健康对照组 1.02±0.30 0.99±0.04 1.00±0.03 1.00±0.09 1.00±0.05
模型对照组 22.69±6.35* 1.84±0.16* 2.16±0.04* 12.97±2.77* 11.18±0.79*
阳性对照组 1.21±0.40# 0.42±0.03*# 0.81±0.39# 10.57±1.09* 7.38±2.21*#
枸杞多糖组 3.01±0.38# 0.24±0.10*#△ 0.66±0.19# 21.56±0.84*#△ 4.83±0.31*#△
Tab 2 mRNA expressions of Trif, Tram, Traf6, Rip1 and Tnf-α in mice peritoneal macrophages
Fig 1 Electropherograms of TRIF, TRAM, TRAF6, RIP1 and TNF-α expression in each group
($\bar x \pm s$)
组别 TRIF TRAM TRAF6 RIP1 TNF-α
   *与健康对照组比较,P < 0.05;#与模型对照组比较,P < 0.05;与阳性对照组比较,P < 0.05.TRIF:β干扰素Toll/IL-1R结构域衔接蛋白;TRAM:TRIF相关接头分子;TRAF6:肿瘤坏死因子受体相关因子6;RIP1:受体相互作用蛋白1.
健康对照组 0.93±0.25 1.04±0.17 0.33±0.26 1.23±0.21 0.21±0.08
模型对照组 0.82±0.24 1.00±0.27 0.37±0.19 1.09±0.14 0.46±0.11*
阳性对照组 0.94±0.24 1.41±0.53 0.34±0.11 1.33±0.16# 0.27±0.11#
枸杞多糖组 0.90±0.15 0.94±0.28 0.32±0.07 1.03±0.19 0.34±0.03
Tab 3 Expressions of TRIF, TRAM, TRAF6, RIP1 and TNF-α protein in mice peritoneal macrophages
[1]   ZHAO R , JIN R , CHEN Y et al. Hypoglycemic and hypolipidemic effects of lycium barbarum polysaccharide in diabetic rats[J]. CHM, 2015, 7 (4): 310- 315
[2]   SHI G J , ZHENG J , WU J et al. Beneficial effects of Lycium barbarum polysaccharide on spermatogenesis by improving antioxidant activity and inhibiting apoptosis in streptozotocin-induced diabetic male mice[J]. Food Funct, 2017, 8 (3): 1215- 1226
doi: 10.1039/C6FO01575A
[3]   WU M, GUO L. Anti-fatigue and anti-hypoxic effects of lycium barbarum polysaccharides[C]//Proceedings of the International Conference on Advances in Energy, Environment and Chemical Engineering. Paris: Atlantis Press, 2015: 686-689.
[4]   CAI H , LIU F , ZUO P et al. Practical application of antidiabetic efficacy of lycium barbarum polysaccharide in patients with type 2 diabetes[J]. Med Chem, 2015, 11 (4): 383- 390
doi: 10.2174/1573406410666141110153858
[5]   MAY M J , GHOSH S . Signal transduction through NF-kappa B[J]. Immunol Today, 1998, 19 (2): 80- 88
doi: 10.1016/S0167-5699(97)01197-3
[6]   BRASIER A R . The NF-kappaB regulatory network[J]. Cardiovasc Toxicol, 2006, 6 (2): 111- 130
doi: 10.1385/CT:6:2
[7]   AKIRA S , TAKEDA K . Toll-like receptor signalling[J]. Nat Rev Immunol, 2004, 4 (7): 499- 511
doi: 10.1038/nri1391
[8]   解鸿翔, 周红 . 信号分子TRIF的研究进展[J]. 细胞与分子免疫学杂志, 2012, 28 (2): 217- 220
XIE Hongxiang , ZHOU Hong . Research progress on signal molecule TRIF[J]. Chinese Journal of Cellular and Molecular Immunology, 2012, 28 (2): 217- 220
[9]   YAMAMOTO M , SATO S , HEMMI H et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway[J]. Nat Immunol, 2003, 4 (11): 1144- 1150
doi: 10.1038/ni986
[10]   OFENGEIM D , YUAN J . Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death[J]. Nat Rev Mol Cell Biol, 2013, 14 (11): 727- 736
doi: 10.1038/nrm3683
[11]   超晨. β干扰素TIR结构域衔接蛋白(TRIF)在NOD小鼠1型糖尿病发病中的作用[D]. 长沙: 中南大学, 2013.
CHAO Chen. The role of TIR-domain-containing adapter-inducing interferon-β(TRIF) in the development of type 1 diabetes in nonobese diabetic mice[D]. Changsha: Central South University, 2013. (in Chinese)
[12]   LAN P , LI W , WEN T N et al. iTRAQ protein profile analysis of arabidopsis roots reveals new aspects critical for iron homeostasis[J]. Plant Physiol, 2011, 155 (2): 821- 834
doi: 10.1104/pp.110.169508
[13]   VALENCIA-SANCHEZ M A , LIU J , HANNON G J et al. Control of translation and mRNA degradation by miRNAs and siRNAs[J]. Genes Dev, 2006, 20 (5): 515- 524
doi: 10.1101/gad.1399806
[14]   徐海波, 闫晓光, 钟威 . 新诊断2型糖尿病患者血清Nesfatin-1、肿瘤坏死因子-α水平与胰岛素抵抗的相关性研究[J]. 中国糖尿病杂志, 2017, 25 (1): 45- 48
XU Haibo , YAN Xiaoguang , ZHONG Wei . Correlation analysis of serum Nesfatin-1, TNF-α and insulin resistance in patients with newly diagnosed type 2 diabetes[J]. Chinese Journal of Diabetes, 2017, 25 (1): 45- 48
[15]   曹艳丽, 谷剑秋, 王涤非 et al. 肥胖者脂肪组织中TNF-α表达与脂肪细胞大小的相关性分析[J]. 中国组织化学与细胞化学杂志, 2013, 22 (4): 282- 285
CAO Yanli , GU Jianqiu , WANG Difei et al. Correlation between TNF-α expression in adipose tissue and adipocyte size in obesity[J]. Chinese Journal of Histochemistry and Cytochemistry, 2013, 22 (4): 282- 285
[16]   向宇飞. 糖尿病人群及高脂饮食肥胖小鼠的免疫代谢学研究[D]. 长沙: 中南大学, 2011.
XIANG Yufei. The immunometabolism studies in diabetic subjects and diet induced obese mice[D]. Changsha: Central South University, 2011. (in Chinese)
[1] PAN Zongfu, FANG Qilu, ZHANG Yiwen, LI Li, HUANG Ping. Identification of key pathways and drug repurposing for anaplastic thyroid carcinoma by integrated bioinformatics analysis[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 187-193.
[2] DING Jingjing,LU Yunbi. Research progress on receptor interacting proteins in inflammation[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 89-96.
[3] WANG Xiaorong,LU Yunbi,ZHANG Weiping,WEI Erqing,FANG Sanhua. Effects of cysteinyl leukotriene receptors on phagocytosis of mouse microglial cells[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 10-18.
[4] WEI Zhenlong,SHI Wengui,CHEN Keming,ZHOU Jian,WANG Minggang. Icaritin promotes maturation and mineralization of mouse osteoblast MC3T3-E1 cells through CXCR4/SDF-1 signal pathway[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 571-577.
[5] ZHANG Binbin, WU Meiling, LIU Luna, ZHU Yangbin, KAI Jiejing, ZENG Linghui. Inhibiting mammalian target of rapamycin signaling pathway improves cognitive function in mice with chronic cerebral ischemia[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 405-412.
[6] HE Yujie,PAN Jianping. Progress on mechanisms for pathogensto evade NOD-like receptor and Toll-like receptor signaling pathways[J]. J Zhejiang Univ (Med Sci), 2017, 46(2): 218-224.
[7] FENG Sheng, CHEN Jijun, ZHENG Yichun. Research progress on the effect of glucocorticoid receptor signaling pathways in bladder cancer[J]. J Zhejiang Univ (Med Sci), 2016, 45(6): 655-660.
[8] HAN Yan-xia, YOU Liang-shun, LIU Hui, MAO Li-ping, YE Xiu-jin, QIAN Wen-bin. Apoptosis of acute myeloid leukemia HL-60 cells induced by CDK inhibitor SNS-032 and its molecular mechanisms[J]. J Zhejiang Univ (Med Sci), 2015, 44(2): 174-178.
[9] ZHANG Chun-yang, ZHU Yan, FENG Hua-song, CHEN Xu-xin. Effect of irradiated human lung fibroblasts on activation of canonical Wnt/β-catenin signaling pathway in mesenchymal stem cells[J]. J Zhejiang Univ (Med Sci), 2015, 44(2): 162-166.
[10] ZHENG Yong-xia, ZHANG Cheng-wen, HUI Bin, et al. Roles of PIK3R1 gene in development of hepatocellular carcinoma[J]. J Zhejiang Univ (Med Sci), 2014, 43(5): 559-.
[11] SHI Wen-gui,MA Xiao-ni,CHEN Ke-ming. The role of primary cilium in signal transduction and its mechanism[J]. J Zhejiang Univ (Med Sci), 2014, 43(3): 359-365.
[12] XU Qian, JIN Meng-mei, ZHENG Wen-wen, ZHU Li, XU Shui-ling. Role of Toll-like receptor 2/4-nuclear factor-κB signaling pathway in invasion of Mycobacterium tuberculosis to mouse dendritic cells[J]. J Zhejiang Univ (Med Sci), 2014, 43(2): 200-206.
[13] LIU Xin, WU Haiqin. Progress on neuroprotective effects of erythropoietin[J]. J Zhejiang Univ (Med Sci), 2013, 42(6): 693-699.
[14] ZHANG Jun, ZHANG Guo-Xin, CHEN Fei-Fei, HE Bang-Shun, YE Feng, PAN Xiao-Lin. Effect of Helicobacter Pylori lipopolysaccharide on expression of Gli and Ptch-1 proteins in sonic hedgehog signaling pathway of gastric mucosa GES-1 cells[J]. J Zhejiang Univ (Med Sci), 2013, 42(5): 543-549.
[15] RAO Cui, LIN Shan-Li, WEN Huan, DENG Hong. Crosstalk between canonical TGF-β/Smad and Wnt/β-catenin signaling pathway[J]. J Zhejiang Univ (Med Sci), 2013, 42(5): 591-597.