Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (1): 27-34    DOI: 10.3785/j.issn.1008-9292.2018.02.04
    
Chlorogenic acid inhibits non-enzymatic glycation and oxidation of low density lipoprotein
CAI Rui1(),CHEN Shuqing1,*(),JIANG Shenhua2,*()
1. College of Pharmacy, Zhejiang University, Hangzhou 310058, China
2. School of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, Jiangxi Province, China
Download: HTML( 16 )   PDF(1075KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To investigate the effect of chlorogenic acid (CGA) on non-enzymatic glycation and oxidation of low density lipoprotein (LDL). Methods: The non-enzymatic glycation incubation system of LDL-glucose was established. The contents of early glycation products (Amodori product) and intermediate products (dicarbonyl compound) were determined by ultraviolet-visible spectrophotometry, and the content of advanced glycation end products (AGEs) was determined by fluorescence spectrophotometry. The LDL oxidation incubation system was established. The contents of thiobarbituric acid reactive substances(TBARS) and conjugated diene were determined by ultraviolet-visible spectrophotometry. The tryptophan fluorescence quenching, and the content of lipofuscin, total fluorescence products, active aldehydes and malondialdehyde were determined by fluorescence spectrophotometry, and further verified by three-dimensional fluorescence spectroscopy. Results: In the LDL glycation experiment, 150 μg/mL and 300 μg/mL CGA inhibited the formation of Amadori product, dicarbonyl compounds and AGEs. In the LDL oxidation experiment, 15 μg/mL and 25 μg/mL CGA inhibited the formation of TBARS effectively; 5 μg/mL and 10 μg/mL CGA inhibited tryptophan fluorescence quenching, and the formation of active aldehydes, malondialdehyde, total fluorescence products, lipofuscin and conjugated diolefine. And the three-dimensional fluorescence spectroscopy showed the same results. Conclusion: CGA can inhibit non-enzymatic glycation and oxidation of LDL.



Key wordsChlorogenic acid/pharmacology      Lipoproteins, LDL/drug effects      Glycosylation/drug effects      Spectrum analysis      Ultraviolet rays      Spectrometry, fluorescence/methods      Antioxidants     
Received: 30 December 2017      Published: 12 June 2018
CLC:  R96  
Corresponding Authors: CHEN Shuqing,JIANG Shenhua     E-mail: cairuiangle@gmail.com;chenshuqing@zju.edu.cn;jiangshenhua66@163.com
Cite this article:

CAI Rui,CHEN Shuqing,JIANG Shenhua. Chlorogenic acid inhibits non-enzymatic glycation and oxidation of low density lipoprotein. J Zhejiang Univ (Med Sci), 2018, 47(1): 27-34.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2018.02.04     OR     http://www.zjujournals.com/med/Y2018/V47/I1/27


绿原酸抑制低密度脂蛋白非酶糖基化和氧化修饰研究

目的: 研究绿原酸对人体低密度脂蛋白(LDL)非酶糖基化和氧化修饰的抑制作用。方法: 建立LDL非酶糖基化孵育体系,采用紫外-可见分光光度法测定糖基化早期产物(Amodori产物)和中期产物(二羰基化合物)的含量,荧光分光光度计测定糖基化末期产物的含量;建立LDL氧化孵育体系,采用紫外-可见分光光度法测定硫代巴比妥酸反应物(TBARS)和共轭二烯的含量,荧光分光光度法测定色氨酸荧光淬灭强度以及脂褐素、总荧光产物、活性醛和丙二醛的含量,并进一步通过三维荧光等高线特征谱验证。结果: 在LDL糖基化修饰模型中,150 μg/mL和300 μg/mL的绿原酸均能够抑制Amodori产物、二羰基化合物和糖基化末期产物的生成;在LDL氧化修饰模型中,15 μg/mL和25 μg/mL的绿原酸均能够抑制TBARS的生成;5 μg/mL和10 μg/mL的绿原酸对色氨酸荧光淬灭,以及对活性醛、丙二醛、总荧光产物、脂褐素和共轭二烯的生成均有抑制作用。三维荧光等高线特征谱结果与前一致。结论: 绿原酸能够抑制LDL非酶糖基化和氧化修饰。


关键词: 绿原酸/药理学,  脂蛋白类, LDL/药物作用,  糖基化/药物作用,  光谱分析,  紫外线,  光谱法, 荧光/方法,  抗氧化剂 
Fig 1 The inhibition of chlorogenic acid on active aldehyde and malondialdehyde during oxidation of low density lipoprotein
Fig 2 Three-dimensional fluorescence contour spectroscopy showed the inhibition efficiency of chlorogenic acid during oxidation of low density lipoprotein
[1]   PRASSL R , LAGGNER P . Molecular structure of low density lipoprotein:current status and future challenges[J]. Eur Biophys J, 2009, 38 (2): 145- 158
doi: 10.1007/s00249-008-0368-y
[2]   薛慧君, 孙润广, 王小梅 et al. 卵黄低密度脂蛋白结构的红外光谱和激光拉曼光谱分析[J]. 光谱学与光谱分析, 2010, 30 (11): 2998- 3001
XUE Huijun , SUN Runguang , WANG Xiaomei et al. Laser raman and infrared spectrum analysis of low-density lipoproteins purified from hen egg yolk[J]. Spectroscopy and Spectral Analysis, 2010, 30 (11): 2998- 3001
doi: 10.3964/j.issn.1000-0593(2010)11-2998-04
[3]   YANAGIMOTO K , OCHI H , LEE K G et al. Antioxidative activities of fractions obtained from brewed coffee[J]. J Agric Food Chem, 2004, 52 (3): 592- 596
doi: 10.1021/jf030317t
[4]   IWAI K , KISHIMOTO N , KAKINO Y et al. In vitro antioxidative effects and tyrosinase inhibitory activities of seven hydroxycinnamoyl derivatives in green coffee beans[J]. J Agric Food Chem, 2004, 52 (15): 4893- 4898
doi: 10.1021/jf040048m
[5]   FARAH A , PAULIS DE T , TRUGO L C et al. Effect of roasting on the formation of chlorogenic acid lactones in coffee[J]. J Agric Food Chem, 2005, 53 (5): 1505- 1513
doi: 10.1021/jf048701t
[6]   JIANG Y , KUSAMA K , SATOH K et al. Induction of cytotoxicity by chlorogenic acid in human oral tumor cell lines[J]. Phytomedicine, 2000, 7 (6): 483- 491
doi: 10.1016/S0944-7113(00)80034-3
[7]   KURATA R , YAHARA S , YAMAKAWA O et al. Simple high-yield purification of 3, 4, 5, -tri-o-caffeoylquinic acid from sweetpotato(ipomoea batatas l.) leaf and its inhibitory effects on aldose reductase[J]. Food Sci Technol Res, 2011, 17 (2): 87- 92
doi: 10.3136/fstr.17.87
[8]   YANG Q , WAN Y , JIANG S H et al. The antioxidant inhibition of clove effective fraction on lipid, protein and spectra variation of LDL[J]. Spectrosc Spect Anal, 2017, 37 (1): 312- 320
[9]   江慎华, 肖敏, 江春霞 et al. 生物活性追踪法对丁香抗低密度脂蛋白氧化修饰的研究[J]. 现代食品科技, 2013, 29 (9): 2063- 2067, 2151
JIANG Shenhua , XIAO Min , JIANG Chunxia et al. Oxidation modification of clove anti-low-density-lipoprotein by bio-assay guided method[J]. Modern Food Science and Technology, 2013, 29 (9): 2063- 2067, 2151
[10]   WIELAND H , SEIDEL D . A simple specific method for precipitation of low density lipoproteins[J]. J Lipid Res, 1983, 24 (7): 904- 909
[11]   AHMAD S , AKHTER F , MOINUDDI N et al. Studies on glycation of human low density lipoprotein:a functional insight into physico-chemical analysis[J]. Int J Biol Macromol, 2013, 62 167- 171
doi: 10.1016/j.ijbiomac.2013.08.037
[12]   SUANTAWEE T , WESARACHANON K , ANANTSUPHASAK K et al. Protein glycation inhibitory activity and antioxidant capacity of clove extract[J]. J Food Sci Technol, 2015, 52 (6): 3843- 3850
[13]   LI X L , XIAO J J , ZHA X Q et al. Structural identification and sulfated modification of an antiglycation dendrobium huoshanense polysaccharide[J]. Carbohydr Polym, 2014, 106 247- 254
doi: 10.1016/j.carbpol.2014.02.029
[14]   ZHANG L S , WANG X , DONG L L . Antioxidation and antiglycation of polysaccharides from misgurnus anguillicaudatus[J]. Food Chem, 2011, 124 (1): 183- 187
doi: 10.1016/j.foodchem.2010.06.006
[15]   JOGLEKAR M M , PANASKAR S N , CHOUGALE A D et al. A novel mechanism for antiglycative action of limonene through stabilization of protein conformation[J]. Mol Biosyst, 2013, 9 (10): 2463- 2472
doi: 10.1039/c3mb00020f
[16]   ZHANG Z , CHANG Q , ZHU M et al. Characterization of antioxidants present in hawthorn fruits[J]. J Nutr Biochem, 2001, 12 (3): 144- 152
doi: 10.1016/S0955-2863(00)00137-6
[17]   ESTERBAUER H , ZOLLNER H . Methods for determination of aldehydic lipid peroxidation products[J]. Free Radic Biol Med, 1989, 7 (2): 197- 203
doi: 10.1016/0891-5849(89)90015-4
[18]   CHEN C Y , MILBURY P E , CHUNG S K et al. Effect of almond skin polyphenolics and quercetin on human LDL and apolipoprotein B-100 oxidation and conformation[J]. J Nutr Biochem, 2007, 18 (12): 785- 794
doi: 10.1016/j.jnutbio.2006.12.015
[19]   王丽丽, 赵新淮 . 紫丁香叶提取物对低密度脂蛋白氧化修饰的抑制作用[J]. 东北农业大学学报, 2007, 38 (5): 641- 644
WANG Lili , ZHAO Xinhuai . Inhibition of the extract from clove leaf(syringe oblata) on oxidative modification of low-density lipoprotein[J]. Journal of Northeast Agricultural University, 2007, 38 (5): 641- 644
[20]   MCLEAN L R , HAGAMAN K A . Effect of probucol on the physical properties of low-density lipoproteins oxidized by copper[J]. Biochemistry, 1989, 28 (1): 321- 327
doi: 10.1021/bi00427a043
[21]   孙霞, 刘庆平, 郑学仿 et al. 光谱法研究Cu2+诱导的不同时间的LDL体外氧化[J]. 光谱学与光谱分析, 2009, 29 (5): 1386- 1389
SUN Xia , LIU Qingping , ZHENG Xuefang et al. Studies on the oxidation of LDL induced by Cu2+ at different time by spectroscopic method[J]. Spectroscopy and Spectral Analysis, 2009, 29 (5): 1386- 1389
[22]   PICARD S , PARTHASARATHY S , FRUEBIS J et al. Aminoguanidine inhibits oxidative modification of low density lipoprotein protein and the subsequent increase in uptake by macrophage scavenger receptors[J]. Proc Natl Acad Sci U S A, 1992, 89 (15): 6876- 6880
doi: 10.1073/pnas.89.15.6876
[23]   KOLLER E , QUEHENBERGER O , JVRGENS G et al. Investigation of human plasma low density lipoprotein by three-dimensional fluorescence spectroscopy[J]. FEBS Lett, 1986, 198 (2): 229- 234
doi: 10.1016/0014-5793(86)80411-2
[24]   CHOMPOO J , UPADHYAY A , KISHIMOTO W et al. Advanced glycation end products inhibitors from Alpinia zerumbet rhizomes[J]. Food Chem, 2011, 129 (3): 709- 715
doi: 10.1016/j.foodchem.2011.04.034
[25]   CHO A S , JEON S M , KIM M J et al. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice[J]. Food Chem Toxicol, 2010, 48 (3): 937- 943
doi: 10.1016/j.fct.2010.01.003
[26]   杨琼玉, 万严, 江慎华 et al. 丁香有效部位对LDL中脂类、蛋白氧化修饰及光谱学变化的抑制(英文)[J]. 光谱学与光谱分析, 2017, 37 (1): 312- 320
YANG Qiongyu , WAN Yan , JIANG Shenhua et al. The antioxidant inhibition of clove fraction on lipid, protein and spectra variation of LDL[J]. Spectroscopy and Spectral Analysis, 2017, 37 (1): 312- 320
[27]   JEON E R , KARKI R , KIM D W . Inhibitory effect of chlorogenic acid on low-density lipoprotein oxidation induced by Cu ion[J]. Korean J Plant Res, 2010, 23 519- 525
[28]   万严, 杨琼玉, 曲文娟 et al. 丁香乙酸乙酯相抑制LDL中赖氨酸、色氨酸氧化修饰的研究[J]. 食品工业科技, 2017, 38 (17): 10- 16, 23
WAN Yan , YANG Qiongyu , QU Wenjuan et al. Inhibition effect of ethyl acetate fraction of clove on Trp and Lys modification during LDL oxidation[J]. Science and Technology of Food Industry, 2017, 38 (17): 10- 16, 23
[29]   COMINACINI L , GARBIN U , DAVOLI A et al. A simple test for predisposition to LDL oxidation based on the fluorescence development during copper-catalyzed oxidative modification[J]. J Lipid Res, 1991, 32 (2): 349
[30]   张泽生, 乌兰 . 金银花中绿原酸的体外抑菌和抗氧化性的研究[J]. 天津科技大学学报, 2005, 20 (2): 5- 8, 34
ZHANG Zesheng , WU Lan . Antimicrobial and antioxidation in vitro of chlorogenic acid in Flos Lonicerae[J]. Journal of Tianjin University of Science& Technology, 2005, (2): 5- 8, 34
[1] LIU Xingang,WU Min,LI Suying,Li Zhongbao,HU Qinglian,ZHOU Jun,TANG Guping. Synthesis of BODIPY photosensitizers and their photodynamic effect on cancer cells[J]. J Zhejiang Univ (Med Sci), 2017, 46(2): 135-143.
[2] LI Long, XUAN Gui-da,CHEN Ping. Purification of polyphenols from sabina vulgaris antoine and its antioxidant properties[J]. J Zhejiang Univ (Med Sci), 2014, 43(2): 175-179.
[3] . Preparation of a zinc porphyrinated nanofibrous membrane and its ammonia sensing property[J]. J Zhejiang Univ (Med Sci), 2012, 41(3): 274-280.
[4] . Components of myrsinane-type diterpenes from Euphorbia prolifera[J]. J Zhejiang Univ (Med Sci), 2011, 40(4): 380-383.
[5] Zheng Gaoli, Zhu Shoumin, Liu Ziyi. THE ANTIOXIDATIVE EFFECT OF SOYBEAN ISOFLAVONES[J]. J Zhejiang Univ (Med Sci), 1997, 26(5): 196-199.