Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (1): 10-18    DOI: 10.3785/j.issn.1008-9292.2018.02.02
    
Effects of cysteinyl leukotriene receptors on phagocytosis of mouse microglial cells
WANG Xiaorong1,2(),LU Yunbi2,ZHANG Weiping2,WEI Erqing2,FANG Sanhua2,3,*()
1. Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
2. Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
3. Core Facilities, Zhejiang University School of Medicine, Hangzhou 310058, China
Download: HTML( 28 )   PDF(1059KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To determine the effects of cysteinyl leukotriene receptors (CysLT1R and CysLT2R) on phagocytosis of mouse BV2 microglial cells. Methods: BV2 cells were stimulated with microglial activators lipopolysaccharide (LPS) or CysLT receptor agonists LTD4. The phagocytosis of BV2 cells was observed by immunofluorescence analysis and flow cytometry. The intracellular distributions of CysLT1R and CysLT2R in BV2 cells were examined with immunofluorescence staining. Results: Both LPS and LTD4 could significantly enhance the phagocytosis of BV2 cells, and such effect could be inhibited by CysLT1R selective antagonist Montelukast and CysLT2R selective antagonist HAMI 3379. The activation of BV2 cells induced by LTD4 or LPS resulted in changes in intracellular distributions of CysLT1R and CysLT2R. CysLT1R and CysLT2R was co-localization with a similar distribution. Conclusion: CysLT1R and CysLT2R regulate the phagocytosis of mouse BV2 microglial cells with a synergistic effect.



Key wordsCysteine/metabolism      Receptors, leukotriene/metabolism      Phagocytosis/drug effects      Microglia/drug effects      Lipopolysaccharides/pharmacology      Cells, cultured     
Received: 07 December 2017      Published: 12 June 2018
CLC:  R743  
  R96  
Corresponding Authors: FANG Sanhua     E-mail: 21118318@zju.edu.cn;fshfbzxhq@zju.edu.cn
Cite this article:

WANG Xiaorong,LU Yunbi,ZHANG Weiping,WEI Erqing,FANG Sanhua. Effects of cysteinyl leukotriene receptors on phagocytosis of mouse microglial cells. J Zhejiang Univ (Med Sci), 2018, 47(1): 10-18.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2018.02.02     OR     http://www.zjujournals.com/med/Y2018/V47/I1/10


半胱氨酰白三烯受体对小鼠小胶质细胞吞噬功能的调节作用

目的: 研究半胱氨酰白三烯(CysLT)受体(CysLT1R和CysLT2R)对小鼠BV2小胶质细胞吞噬功能的调节作用。方法: 以经典炎症激活剂脂多糖和CysLT受体激动剂LTD4处理BV2细胞,采用免疫荧光计数法和流式细胞仪检测BV2细胞吞噬功能,免疫荧光共染法观察BV2细胞中CysLT1R和CysLT2R表达分布。结果: 脂多糖和LTD4均能增强BV2细胞吞噬功能,而CysLT1受体选择性拮抗剂孟鲁司特和CysLT2受体选择性拮抗剂HAMI 3379均能抑制脂多糖和LTD4诱导的BV2细胞吞噬功能增强;脂多糖和LTD4激活BV2细胞后可引起CysLT1R和CysLT2R在细胞内分布变化,两种亚型的受体分布变化趋势基本一致,且存在共表达。结论: CysLT1R和CysLT2R均可以调节BV2细胞的吞噬功能,且两者具有协同性。


关键词: 半胱氨酸/代谢,  受体, 白三烯/代谢,  吞噬作用/药物作用,  小神经胶质细胞/药物作用,  脂多糖类/药理学,  细胞, 培养的 
Fig 1 Immunofluorescence analysis showed lipopolysaccharides and LTD4-induced enhanced phagocytosis in BV2 cells (n=9)
Fig 2 Effects of Montelukast and HAMI 3379 on phagocytosis in BV2 cells
Fig 3 Immunofluorescence analysis showed Montelukast and HAMI 3379 inhibited lipopolysaccharides or LTD4-induced enhanced phagocytosis in BV2 cells (n=9)
Fig 4 Montelukast and HAMI 3379 inhibited lipopolysaccharides or LTD4-induced enhanced phagocytosis in BV2 cells (n=9)
Fig 5 Lipopolysaccharides-induced changes in distribution of CysLT receptors in BV2 cells
Fig 6 LTD4 -induced changes in distribution of CysLT receptors in BV2 cells
[1]   KOFLER J , WILEY C A . Microglia:key innate immune cells of the brain[J]. Toxicol Pathol, 2011, 39 (1): 103- 114
doi: 10.1177/0192623310387619
[2]   LI F , ZHU S , WU C et al. Neuroinflammation and cell therapy for Parkinson's disease[J]. Front Biosci(Schol Ed), 2011, 3 1407- 1420
[3]   SHIE F S , WOLTJER R L . Manipulation of microglial activation as a therapeutic strategy in Alzheimer's disease[J]. Curr Med Chem, 2007, 14 (27): 2865- 2871
doi: 10.2174/092986707782359981
[4]   EKDAHL C T , KOKAIA Z , LINDVALL O . Brain inflammation and adult neurogenesis:the dual role of microglia[J]. Neuroscience, 2009, 158 (3): 1021- 1029
doi: 10.1016/j.neuroscience.2008.06.052
[5]   SHIE F S , WOLTJER R L . Manipulation of microglial activation as a therapeutic strategy in Alzheimer's disease[J]. Curr Med Chem, 2007, 14 (27): 2865- 2871
doi: 10.2174/092986707782359981
[6]   RAMLACKHANSINGH A F , BROOKS D J , GREENWOOD R J et al. Inflammation after trauma:microglial activation and traumatic brain injury[J]. Ann Neurol, 2011, 70 (3): 374- 383
doi: 10.1002/ana.v70.3
[7]   DE LEPELEIRE I , REISS T F , ROCHETTE F et al. Montelukast causes prolonged, potent leukotriene D4-receptor antagonism in the airways of patients with asthma[J]. Clin Pharmacol Ther, 1997, 61 (1): 83- 92
doi: 10.1016/S0009-9236(97)90184-3
[8]   JIN R , YANG G , LI G . Inflammatory mechanisms in ischemic stroke:role of inflammatory cells[J]. J Leukoc Biol, 2010, 87 (5): 779- 789
doi: 10.1189/jlb.1109766
[9]   CIANA P , FUMAGALLI M , TRINCAVELLI M L et al. The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor[J]. EMBO J, 2006, 25 (19): 4615- 4627
doi: 10.1038/sj.emboj.7601341
[10]   NEUMANN H , KOTTER M R , FRANKLIN R J . Debris clearance by microglia:an essential link between degeneration and regeneration[J]. Brain, 2009, 132 (Pt 2): 288- 295
[11]   ZHANG X Y , WANG X R , XU D M et al. HAMI 3379, a CysLT2 receptor antagonist, attenuates ischemia-like neuronal injury by inhibiting microglial activation[J]. J Pharmacol Exp Ther, 2013, 346 (2): 328- 341
doi: 10.1124/jpet.113.203604
[12]   ZHANG L H , WEI E Q . ONO-1078 reduces NMDA-induced brain injury and vascular cell adhesion molecule-1 expression in rats[J]. Acta Pharmacol Sin, 2005, 26 (4): 435- 440
doi: 10.1111/aphs.2005.26.issue-4
[13]   SCHRIJVERS D M , MARTINET W , DE MEYER G R et al. Flow cytometric evaluation of a model for phagocytosis of cells undergoing apoptosis[J]. J Immunol Methods, 2004, 287 (1-2): 101- 108
doi: 10.1016/j.jim.2004.01.013
[14]   COLEMAN R A , EGLEN R M , JONES R L et al. Prostanoid and leukotriene receptors:a progress report from the IUPHAR working parties on classification and nomenclature[J]. Adv Prostaglandin Thromboxane Leukot Res, 1995, 23 283- 285
[15]   LYNCH K R , O'NEILL G P , LIU Q et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor[J]. Nature, 1999, 399 (6738): 789- 793
doi: 10.1038/21658
[16]   WUNDER F , TINEL H , KAST R et al. Pharmacological characterization of the first potent and selective antagonist at the cysteinyl leukotriene 2(CysLT(2)) receptor[J]. Br J Pharmacol, 2010, 160 (2): 399- 409
doi: 10.1111/j.1476-5381.2010.00730.x
[17]   FANG K M , YANG C S , SUN S H et al. Microglial phagocytosis attenuated by short-term exposure to exogenous ATP through P2X receptor action[J]. J Neurochem, 2009, 111 (5): 1225- 1237
doi: 10.1111/jnc.2009.111.issue-5
[18]   ORR A G , ORR A L , LI X J et al. Adenosine A(2A) receptor mediates microglial process retraction[J]. Nat Neurosci, 2009, 12 (7): 872- 878
doi: 10.1038/nn.2341
[19]   JIANG Y , BORRELLI L A , KANAOKA Y et al. CysLT2 receptors interact with CysLT1 receptors and down-modulate cysteinyl leukotriene dependent mitogenic responses of mast cells[J]. Blood, 2007, 110 (9): 3263- 3270
doi: 10.1182/blood-2007-07-100453
[20]   PARHAMIFAR L , SIME W , YUDINA Y et al. Ligand-induced tyrosine phosphorylation of cysteinyl leukotriene receptor 1 triggers internalization and signaling in intestinal epithelial cells[J]. PLoS One, 2010, 5 (12): e14439
doi: 10.1371/journal.pone.0014439
[1] WANG Hao,GUO Honggang,LOU Qi,SHI Qiaojuan. Effects of cysteinyl leukotrienes receptor antagonists on chronic brain injury after global cerebral ischemia/reperfusion[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 19-26.
[2] FANG Bing, QIAN Cong, JIANG Dingyao, XU Jing, YU Jun, CHEN Xianyi, XU Liang, CHEN Gao, ZHANG Jianmin. Hypoglossal canal dural arteriovenous fistulas treated with transvenous embolization:report of two cases and literature review[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 445-448.
[3] WANG Qingsong, ZHANG Sheng, ZHANG Meixia, CHEN Zhicai, LOU Min. Collateral score based on CT perfusion can predict the prognosis of patients with anterior circulation ischemic stroke after thrombectomy[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 377-383.
[4] LAI Zhenzhen, ZHANG Sheng, ZHONG Genlong, ZHANG Xiaocheng, CHEN Qingmeng, LOU Min. Relationship between dynamic CT angiography-based collateral flow evaluation and outcome of patients with stroke induced by acute basilar artery occlusion[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 371-376.
[5] ZHONG Genlong, CHEN Zhicai, ZHANG Ruiting, LIU Chang, ZHOU Ying, YAN Shenqiang, LOU Min. Association of serum folate level with severity of white matter hyperintensity and presence of cerebral microbleeds[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 390-396.
[6] FENG Xuewen, CHEN Zhicai, ZHONG Genlong, LOU Min. Safety of tirofiban in patients with acute cerebral infarct receiving endovascular therapy[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 397-404.
[7] ZHANG Meixia, ZHOU Ying, ZHANG Ruiting, ZHANG Sheng, LOU Min. Maximal infarct volume to benefit from intravenous thrombolysis and its relation with onset to treatment time[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 384-389.
[8] ZHANG Binbin, WU Meiling, LIU Luna, ZHU Yangbin, KAI Jiejing, ZENG Linghui. Inhibiting mammalian target of rapamycin signaling pathway improves cognitive function in mice with chronic cerebral ischemia[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 405-412.
[9] BAI Shi, SUN Yayi, WU Lijuan, WU Zhongmin, FANG Marong. Tripotolide ameliorates inflammation and apoptosis induced by focal cerebral ischemia/reperfusion in rats[J]. J Zhejiang Univ (Med Sci), 2016, 45(5): 493-500.
[10] YAO Meifang, SUN Xue, HAN Jue, TU Yina, HE Jie, ZHAO Yiming, LOU Hanyu, PANG Xiaohong, ZENG Wenheng, ZHANG Songzhao, SHAN Pengfei. Metabolic syndrome increases Framingham risk score of patients with type 2 diabetes mellitus[J]. J Zhejiang Univ (Med Sci), 2016, 45(3): 268-274.
[11] LIU Ke-qin, CHEN Qing-meng, YAN Shen-qiang, ZHANG Sheng, LOU Min. Relationship between early blood pressure variability and reperfusion in acute ischemic stroke patients with intravenous thrombolysis[J]. J Zhejiang Univ (Med Sci), 2015, 44(6): 603-610,617.
[12] ZHAI Li-ping, CHEN Zhi-cai, YAN Shen-qiang, ZHONG Gen-long, ZHANG Sheng, XU Meng-jun, LOU Min. Older age is not related to hemorrhagic transformation and favorable outcomes in patients with wake-up ischemic stroke undergoing intravenous thrombolytic therapy[J]. J Zhejiang Univ (Med Sci), 2015, 44(6): 638-644.
[13] XU Chao, CHEN Zhi-cai, TANG Huan, XU Meng-jun, ZHANG Sheng, SUN Jian-zhong, LOU Min. Signifiance of brush sign on susceptibility-weighted imaging predicts hemorrhagic transformation after intravenous thrombolysis in patients with acute ischemic stroke[J]. J Zhejiang Univ (Med Sci), 2015, 44(6): 625-631.
[14] YAN Shen-qiang, MAO Ying-ying, ZHONG Gen-long, ZHANG Sheng, LOU Min. Safety of intravenous thrombolysis in cerebral microbleeds patients with prior antiplatelet therapy[J]. J Zhejiang Univ (Med Sci), 2015, 44(6): 618-624.
[15] CHEN Qing-meng, XU Lyu-yi, YAN Shen-qiang, ZHANG Xiao-cheng, ZHANG Sheng, LOU Min. Thrombus length evaluated by CT perfusion imaging and its value in prediction of recanalization after intravenous thrombolysis therapy[J]. J Zhejiang Univ (Med Sci), 2015, 44(6): 611-617.