Please wait a minute...
J Zhejiang Univ (Med Sci)  2017, Vol. 46 Issue (6): 600-608    DOI: 10.3785/j.issn.1008-9292.2017.12.05
    
Application of mechanically reinforced 45S5 Bioglass®-derived bioactive glass-ceramic porous scaffolds for bone defect repairing in rabbits
CHEN Lifeng1(),YANG Xianyan2,MA Rui1,*(),ZHU Linghua3
1. Department of General Surgery, Zhejiang University Hospital, Hangzhou 310027, China
2. Zhejiang California International NanoSystems Institute, Zhejiang University, Hangzhou 310058, China
3. Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
Download: HTML( 5 )   PDF(1339KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To evaluate the application of mechanically reinforced 45S5 Bioglass®-derived glass ceramic porous scaffolds for repair of bone defect in rabbits. Methods: The BG-ZnB powders were added into the 45S5 Bioglass® powder/paraffin microsphere mixtures and were sintered at 900℃ to obtain porous scaffolds with highly bioactive BG-ZnB of 0%, 2% or 4% of mass fraction (denoted as 45S5/ZnB0, 45S5/ZnB2, 45S5/ZnB4). Phase composition, porosity and compression properties of three kinds of as-sintered scaffolds were characterized by X-ray analysis, mercury porosimetry, and mechanical test. Thirty-six male New Zealand rabbits with critical-sized femoral bone defects were randomly divided into three groups (45S5/ZnB0 group, 45S5/ZnB2 group and 45S5/ZnB4 group, 12 for each), and were implanted with three kinds of porous scaffolds respectively. X-ray, micro-CT three-dimensional reconstruction and tissue slice staining were used to detected the efficiency of bone regeneration at 6 and 16 weeks after operation. The growth of newly formed bone was observed using HE, Masson staining and EnVision method. Results: Phase compositions of 45S5/ZnB2 and 45S5/ZnB4 were the same with 45S5/ZnB0, but the average pore size and porosity of the scaffolds were decreased with the increase of BG-ZnB content. 45S5/ZnB2 and 45S5/ZnB4 scaffolds exhibited higher compressive strength, osteogenesis and trabecular density than those of the 45S5/ZnB0 scaffold (all P < 0.05). With the mechanical reinforcement of BG-ZnB increased, the content of new bone, collagen type I and osteocalcin increased. Conclusion: Low-melt BG-ZnB-assisted sintering is a promising approach to improve the mechanical strength of 45S5 Bioglass®.



Key wordsFemur/injuries      Bone substitutes      Boron      Zinc      Glass      Silicon dioxide      Biocompatible materials      Materials testing      Ceramics      Bone regeneration      Collagen      Biomechanics     
Received: 18 January 2017      Published: 25 December 2017
CLC:  R318.08  
  R681  
Corresponding Authors: MA Rui     E-mail: clf007@126.com;0013419@zju.edu.cn
Cite this article:

CHEN Lifeng,YANG Xianyan,MA Rui,ZHU Linghua. Application of mechanically reinforced 45S5 Bioglass®-derived bioactive glass-ceramic porous scaffolds for bone defect repairing in rabbits. J Zhejiang Univ (Med Sci), 2017, 46(6): 600-608.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2017.12.05     OR     http://www.zjujournals.com/med/Y2017/V46/I6/600


力学增强型生物玻璃—陶瓷支架材料促进骨再生修复性能研究

目的: 构建一种低熔点含硼、锌生物玻璃(BG-ZnB)力学增强型生物玻璃-陶瓷的多孔支架材料,并探究BG-ZnB含量对支架的结构、力学性能和骨再生效率的影响。方法: 将质量分数为0%、2%、4%的BG-ZnB复合45S5生物活性玻璃通过石蜡微球造孔成型,经900℃烧结分别形成45S5/ZB0、45S5/ZB2、45S5/ZB4三种玻璃-陶瓷多孔支架;测定三种玻璃-陶瓷多孔支架的物相组成、孔隙率和压缩性能。36只雄性新西兰大白兔随机分为45S5/ZnB0组、45S5/ZnB2组和45S5/ZnB4组,将三种多孔支架置入兔骨缺损模型中,分别在第6周和第16周通过X射线摄片、显微CT三维结构重建和组织切片染色等方法检测大白兔骨缺损模型支架的骨再生效率;采用HE染色、Masson三色染色和EnVision二步法染色分析新生骨内生长情况。结果: 力学增强型生物玻璃-陶瓷与45S5生物活性玻璃的物相基本一致,但烧结后的支架在外观上有细微变形。45S5/ZnB2组和45S5/ZnB4支架骨架表面晶粒烧结更为致密,抗压强度较45S5/ZnB0支架明显提高(均P < 0.05)。支架植入后6周和16周时,45S5/ZnB2组和45S5/ZnB4组成骨率和骨小梁密度高于45S5/ZnB0组(均P < 0.05),新生骨、Ⅰ型胶原蛋白和骨钙素表达量较45S5/ZnB0组增加。结论: 低熔点高活性BG-ZnB助烧结工艺能构建出力学增强型生物玻璃-陶瓷多孔支架材料,可为研发骨损伤修复材料奠定实验基础。


关键词: 股骨/损伤,  骨代用品,  硼,  锌,  玻璃,  二氧化硅,  生物相容性材料,  材料试验,  陶瓷制品,  骨再生,  胶原,  生物力学 
Fig 1 X ray diffraction patterns of 45S5/ZB scaffolds and main compositions
Fig 2 Microstructures of 45S5/ZnB scaffolds by scanning electron microscopy
($\bar x \pm s$)
支架种类 45S5:BG-ZnB 石蜡/BG-ZnB 致孔剂尺寸(μm) 平均孔径(μm) 孔隙率(%) 贯通孔(>50 μm,%) 抗压强度(MPa)
与45S5/ZnB0比较,*P < 0.05.BG-ZnB:低熔点含锌、硼生物玻璃.
45S5/ZnB0 100:0 65:35 350 327±3 75.1±2.5 38.2±2.1 3.3±1.8
45S5/ZnB2 98:2 65:35 350 323±5 72.6±1.7 37.7±1.1 15.6±2.3*
45S5/ZnB4 96:4 65:35 500 315±7 71.2±1.8 37.5±1.5 13.6±2.4*
Tab 1 The composition of materials, pore structure parameters and strength of 45S5/ZnB scaffolds
Fig 3 X-ray images of the femoral bone specimens at 6 and 16 weeks after stenting
Fig 4 3D reconstructed micro CT images of the femoral bone defects at 6 and 16 weeks after stenting
Fig 5 Quantitative analysis of bone regeneration at 6 and 16 weeks after stenting
Fig 6 HE staining images of the bone defects implanted with scaffolds after 6 weeks and 16 weeks
Fig 7 Masson staining images of the bone defects implanted with scaffolds after 6 weeks and 16 weeks
Fig 8 Osteocalcin in bone defects implanted with different scaffolds after 6 and 16 weeks(EnVision method)
[1]   SHIN K , ACRI T , GEARY S et al. Biomimetic mineralization of biomaterials using simulated body fluids for bone tissue engineering and regenerative medicine[J]. Tissue Eng Part A, 2017, 23 (19-20): 1169- 1180
doi: 10.1089/ten.tea.2016.0556
[2]   HENCH L L , WEST J K . Biological applications of bioactive glasses[J]. Life Chem Reports, 1996, 13 187- 241
[3]   GORUSTOVICH A A , ROETHER J A , BOCCACCINI A R . Effect of bioactive glasses on angiogenesis:a review of in vitro and in vivo evidences[J]. Tissue Eng Part B Rev, 2010, 16 (2): 199- 207
doi: 10.1089/ten.teb.2009.0416
[4]   HOPPE A , GVLDAL N S , BOCCACCINI A R . A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics[J]. Biomaterials, 2011, 32 (11): 2757- 2774
doi: 10.1016/j.biomaterials.2011.01.004
[5]   JELL G , STEVENS M M . Gene activation by bioactive glasses[J]. J Mater Sci Mater Med, 2006, 17 (11): 997- 1002
doi: 10.1007/s10856-006-0435-9
[6]   FU Q , SAIZ E , RAHAMAN M N et al. Bioactive glass scaffolds for bone tissue engineering:state of the art and future perspectives[J]. Mater Sci Eng C Mater Biol Appl, 2011, 31 (7): 1245- 1256
doi: 10.1016/j.msec.2011.04.022
[7]   BAINO F , VITALE-BROVARONE C . Three-dimensional glass-derived scaffolds for bone tissue engineering:current trends and forecasts for the future[J]. J Biomed Mater Res A, 2011, 97 (4): 514- 535
[8]   LIN L , ZHANG L , WANG J et al. Low-temperature sintering of 45S5 Bioglass?-based glass ceramics:effect of biphasic mixing approach on the mechanical and biological properties[J]. Mat Lett, 2014, 126 154- 158
doi: 10.1016/j.matlet.2014.04.028
[9]   BOCCACCINI A R , CHEN Q , LEFEBVRE L et al. Sintering, crystallisation and biodegradation behaviour of Bioglass-derived glass-ceramics[J]. Faraday Discuss, 2007, 136 27- 44
doi: 10.1039/b616539g
[10]   JONES J R . Review of bioactive glass:from Hench to hybrids[J]. Acta Biomater, 2013, 9 (1): 4457- 4486
doi: 10.1016/j.actbio.2012.08.023
[11]   YANG G , YANG X , LI Z et al. Counterionic biopolymers-reinforced bioactive glass scaffolds with improved mechanical properties in wet state[J]. Mater Lett, 2012, 75 80- 83
doi: 10.1016/j.matlet.2012.01.122
[12]   RAHAMAN M N , DAY D E , BAL B S et al. Bioactive glass in tissue engineering[J]. Acta Biomater, 2011, 7 (6): 2355- 2373
doi: 10.1016/j.actbio.2011.03.016
[13]   SARAVANAPAVAN P , JONES J R , PRYCE R S et al. Bioactivity of gel-glass powders in the CaO-SiO2 system:a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O)[J]. J Biomed Mater Res A, 2003, 66 (1): 110- 119
[14]   SEPULVEDA P , JONES J R , HENCH L L . In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses[J]. J Biomed Mater Res, 2002, 61 (2): 301- 311
doi: 10.1002/(ISSN)1097-4636
[15]   HENCH L L , POLAK J M . Third-generation biomedical materials[J]. Science, 2002, 295 (5557): 1014- 1017
doi: 10.1126/science.1067404
[16]   CHEN G H , TANBG L J , CHEN J et al. Synthesis and characterization of CBS glass/ceramic composites for LTCC application[J]. J Alloys Comp, 2009, 478 (1-2): 858- 862
doi: 10.1016/j.jallcom.2008.11.163
[17]   SHAO H , YANG X , HE Y et al. Bioactive glass-reinforced bioceramic ink writing scaffolds:sintering, microstructure and mechanical behavior[J]. Biofabrication, 2015, 7 (3): 035010
doi: 10.1088/1758-5090/7/3/035010
[18]   LEE J H , LEE C K , CHANG B S et al. In vivo study of novel biodegradable and osteoconductive CaO-SiO2-B2O3 glass-ceramics[J]. J Biomed Mater Res A, 2006, 77 (2): 362- 369
[19]   RYU H S , LEE J K , SEO J H et al. Novel bioactive and biodegradable glass ceramics with high mechanical strength in the CaO-SiO2-B2O3 system[J]. J Biomed Mater Res A, 2004, 68 (1): 79- 89
[20]   YANG X , ZHANG L , CHEN X et al. Influence of B2O3 on the thermal and bioactive properties of CaO-SiO2-P2O5 system for improving strength of low-temperature co-fired porous glass ceramics[J]. J Non-Crystal Solids, 2012, 358 1171- 1179
doi: 10.1016/j.jnoncrysol.2012.02.005
[21]   LIU X , HUANG W , FU H et al. Bioactive borosilicate glass scaffolds:in vitro degradation and bioactivity behaviors[J]. J Mater Sci Mater Med, 2009, 20 (6): 1237- 1243
doi: 10.1007/s10856-009-3691-7
[22]   MASSERA J , FAGERLUND S , HUPA L et al. Crystallization mechanism of the bioactive glasses, 45S5 and S53P4[J]. J Am Ceram Soc, 2012, 95 (2): 607- 613
doi: 10.1111/jace.2012.95.issue-2
[23]   GOUGH J E , JONES J R , HENCH L L . Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold[J]. Biomaterials, 2004, 25 (11): 2039- 2046
doi: 10.1016/j.biomaterials.2003.07.001
[24]   GOUGH J E , CLUPPER D C , HENCH L L . Osteoblast responses to tape-cast and sintered bioactive glass ceramics[J]. J Biomed Mater Res A, 2004, 69 (4): 621- 628
[25]   KAMITAKAHARA M , OHTSUKI C , INADA H et al. Effect of ZnO addition on bioactive CaO-SiO2-P2O5-CaF2 glass-ceramics containing apatite and wollastonite[J]. Acta Biomater, 2006, 2 (4): 467- 471
doi: 10.1016/j.actbio.2006.03.001
[26]   HAKKI S S , BOZKURT B S , HAKKI E E . Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1)[J]. J Trace Elem Med Biol, 2010, 24 (4): 243- 250
doi: 10.1016/j.jtemb.2010.03.003
[1] HUANG Yang,KONG Jinsong,GONG Xiaokang,ZHENG Xin,WANG Haibao,RUAN Jianwei. Biomechanical and biocompatible enhancement of reinforced calcium phosphate cement via RGD peptide grafted chitosan nanofibers[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 593-599.
[2] LU Wei,LIN Mengna,ZHAO Shifang,WANG Huiming,HE Fuming. Application of modified lateral window for maxillary sinus floor augmentation[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 630-636.
[3] ZHANG Zhan, ZHANG Chun, GUO Qiaofeng. Study on the acid hydrolysis, fiber remodeling and bionics mineralization of rat tail tendon collagen type Ⅰ[J]. J Zhejiang Univ (Med Sci), 2016, 45(6): 592-597.
[4] ZHOU Yanfeng, GAO Yuhai, ZHEN Ping, CHEN Keming. Effects of 1.8 mT sinusoidal alternating electromagnetic fields of different frequencies on bone biomechanics of young rats[J]. J Zhejiang Univ (Med Sci), 2016, 45(6): 561-567.
[5] QU Tao, ZHENG Ping, YANG Chengwei, LAN Xu, ZHANG Tao, LIU Hua, WANG Shiyong. Effects of Danshensu on bone formation in ovariectomized rats[J]. J Zhejiang Univ (Med Sci), 2016, 45(6): 587-591.
[6] LIU Qiaoyun, SHEN Hanming, XIA Dajing. Zinc and autophagy[J]. J Zhejiang Univ (Med Sci), 2016, 45(3): 308-314.
[7] YU Xinning, FANG Jinghua, LUO Jianyang, YANG Xianyan, HE Dongshuang, GOU Zhongru, DAI Xuesong. Fabrication of bioactive tissue engineering scaffold for reconstructing calcified cartilage layer based on three-dimension printing technique[J]. J Zhejiang Univ (Med Sci), 2016, 45(2): 126-131.
[8] KONG Xiangpeng, NI Ming, ZHANG Guoqiang, CHAI Wei, LI Xiang, LI Yucong, WANG Yan. Application of tendon-derived stem cells and bone marrow-derived mesenchymal stem cells for tendon injury repair in rat model[J]. J Zhejiang Univ (Med Sci), 2016, 45(2): 112-119.
[9] ZHENG Zefeng, SHEN Weiliang, LE Huihui, DAI Xuesong, OUYANG Hongwei, CHEN Weishan. Three-dimensional parallel collagen scaffold promotes tendon extracellular matrix formation[J]. J Zhejiang Univ (Med Sci), 2016, 45(2): 120-125.
[10] WANG Jian, ZHU Zhi-wen, XU Guo-hua, AN Yue. Research progress of self-assembled monolayer in biomedical metallic materials[J]. J Zhejiang Univ (Med Sci), 2015, 44(5): 589-594.
[11] XIE Yan-fang, WANG Ming-gang, CHEN Ke-ming, SHI Wen-gui, ZHOU Jian, GAO Yu-hai. Icariin enhances differentiation and maturation of rat calvarial osteoblasts in collagen hydrogel three-dimensional culture[J]. J Zhejiang Univ (Med Sci), 2015, 44(3): 301-307.
[12] LI Yun, LIU Yan-ming, FU Tao, LI Bo. Influence of gelatin particle size and gelatin/calcium phosphate cement ratio on repairing potency of composite artificial bone material[J]. J Zhejiang Univ (Med Sci), 2015, 44(3): 293-300.
[13] WANG Bing, CHEN Yan, SONG Yang, WANG En-sheng, ZHENG Dan, QU Fan, ZHOU Jian-hong. Correlation between follicle-stimulating hormone and total procollagen I N-terminal propeptide in perimenopausal women[J]. J Zhejiang Univ (Med Sci), 2015, 44(1): 85-89.
[14] LV Jie-min, Huang Di-yu, Lin Hui, Wang Xian-fa. Laparoscopic anti-reflux surgery with biological mesh in treatment of gastroesophageal reflux disease[J]. J Zhejiang Univ (Med Sci), 2015, 44(1): 74-78,84.
[15] ZHANG Xiao-qin, PU Hong, WANG Yi-ping, et al.. Gelsolin level for prognostic evaluation in patients with critically illness[J]. J Zhejiang Univ (Med Sci), 2014, 43(5): 541-.