Please wait a minute...
J Zhejiang Univ (Med Sci)  2017, Vol. 46 Issue (6): 593-599    DOI: 10.3785/j.issn.1008-9292.2017.12.04
    
Biomechanical and biocompatible enhancement of reinforced calcium phosphate cement via RGD peptide grafted chitosan nanofibers
HUANG Yang(),KONG Jinsong,GONG Xiaokang,ZHENG Xin,WANG Haibao,RUAN Jianwei*()
Orthopaedics Center, Taizhou Municipal Hospital, Taizhou 318000, Zhejiang Province, China
Download: HTML( 9 )   PDF(1178KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To analysis the biomechanical and biocompatible properties of calcium phosphate cement (CPC) enhanced by chitosan short nanofibers(CSNF) and Arg-Gly-Asp (RGD). Methods: Chitosan nanofibers were prepared by electrospinning, and cut into short fibers by high speed dispersion. CPC with calcium phosphorus ratio of 1.5:1 was prepared by Biocement D method. The composition and structure of CPC, CSNF, RGD modified CSNF (CSNF-RGD), CSNF enhanced CPC (CPC-CSNF), RGD modified CPC-CSNF (CPC-CSNF-RGD) were observed by infrared spectrum, X-ray diffraction (XRD) and scan electron microscopy (SEM). The mechanical properties were measured by universal mechanical testing instrument. The adhesion and proliferation of MC3T3 cells were assessed using immunofluorescence staining and MTT method. Results: The distribution of CSNF in the scaffold was homogeneous, and the porous structure between the nanofibers was observed by SEM. The infrared spectrum showed the characteristic peaks at 1633 nm and 1585 nm, indicating that RGD was successfully grafted on chitosan nanofibers. The XRD pattern showed that the bone cement had a certain curability. The stain-stress test showed that break strengths were (17.74±0.54) MPa for CPC-CSNF and (16.67±0.56) MPa for CPCP-CSNF-RGD, both were higher than that of CPC(all P < 0.05). The immunofluorescence staining and MTT results: indicated that MC3T3 cells grew better on CPC-CSNF-RGD after 240 min of culture(all P < 0.05). Conclusion: CSNF-RGD can improve the biomechanical property and biocompatibility of CPC, indicating its potential application in bone tissue repair.



Key wordsGlycine      Arginine      Aspartic acid      Peptides      Chitosan      Nanocomposites      Calcium phosphates      Biomechanics      Biocompatible materials     
Received: 19 April 2017      Published: 25 December 2017
CLC:  R681  
  R318.08  
Corresponding Authors: RUAN Jianwei     E-mail: docter_veasal@163.com;ruan_jianwei@163.com
Cite this article:

HUANG Yang,KONG Jinsong,GONG Xiaokang,ZHENG Xin,WANG Haibao,RUAN Jianwei. Biomechanical and biocompatible enhancement of reinforced calcium phosphate cement via RGD peptide grafted chitosan nanofibers. J Zhejiang Univ (Med Sci), 2017, 46(6): 593-599.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2017.12.04     OR     http://www.zjujournals.com/med/Y2017/V46/I6/593


RGD接枝壳聚糖纳米短纤维增强型磷酸钙骨水泥的生物学性能研究

目的: 分析壳聚糖纳米短纤维(CSNF)和RGD对磷酸钙骨水泥(CPC)生物力学和生物相容性的影响。方法: 采用静电纺丝法制备壳聚糖纳米纤维膜,通过高速剪切形成纳米短纤维,并对CSNF进行RGD基团接枝修饰。采用Biocement D法制备钙磷摩尔比为1.5:1的CPC。通过红外光谱、X射线衍射、扫描电镜对CPC、CSNF、RGD接枝CSNF(CSNF-RGD)、CSNF增强型骨水泥(CPC-CSNF)、RGD接枝CPC-CSNF(CPC-CSNF-RGD)进行成分分析和结构观察,利用万能力学试验机检测其生物力学特性,采用免疫荧光染色和MTT法检测成骨细胞(MC3T3)在上述材料上的黏附和增殖情况。结果: 扫描电镜观察发现,CSNF和CSNF-RGD呈现出分散均匀的多孔结构;红外图谱中CSNF在波长为1637和1579 nm处的吸收峰位移至波长1633和1585 nm处,说明RGD成功接枝到CSNF上;X射线衍射图谱显示CPC具有一定的可固化性;应力应变曲线统计分析结果显示,CPC-CSNF和CPC-CSNF-RGD断裂强度分别为(17.74±0.54)MPa和(16.67±0.56)MPa,均高于CPC(均P < 0.05);实验材料与成骨细胞复合培养240 min后,CPC-CSNF-RGD上细胞数量均明显多于CPC和CPC-CSNF(均P < 0.05)。结论: CSNF和RGD的加入改善了CPC的生物力学性能和生物相容性。


关键词: 甘氨酸,  精氨酸,  天冬氨酸,  肽类,  壳聚糖,  纳米复合物,  磷酸钙类,  生物力学,  生物相容性材料 
Fig 1 Electron micrographs of chitosan short nanofiber (CSNF) and CSNF grafted with RGD
Fig 2 Fourier transform infrared spectra of chitason short nanofibers grafted with RGD
Fig 3 X-ray diffraction patterns of calcium phosphate bone cement (CPC) and chitosan short nanofibers enhanced CPC
Fig 4 Stress-strain curves of calcium phosphate bone cement(CPC), chitosan short nanofibers enhanced CPC(CPC-CSNF) and RGD grafted CPC-CSNF
Fig 5 Electron micrograpgs of calcium phosphate bone cement(CPC), chitosan short nanofibers enhanced CPC(CPC-CSNF) and RGD grafted CPC-CSNF
Fig 6 Immunofluorescence staining of MC3T3 on three types of bone cement at 240 min
Fig 7 MTT absorbance of MC3T3 on calcium phosphate bone cement(CPC), chitosan short nanofibers enhanced CPC(CPC-CSNF) and RGD grafted CPC-CSNF
[1]   AMBARD A J , MUENINGHOFF L . Calcium phosphate cement:review of mechanical and biological properties[J]. J Prosthodont, 2006, 15 (5): 321- 328
doi: 10.1111/jopr.2006.15.issue-5
[2]   ZUO Y , YANG F , WOLKE J G et al. Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration[J]. Acta Biomater, 2010, 6 (4): 1238- 1247
doi: 10.1016/j.actbio.2009.10.036
[3]   AKAY G , BIRCH M A , BOKHARI M A . Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro[J]. Biomaterials, 2004, 25 (18): 3991- 4000
doi: 10.1016/j.biomaterials.2003.10.086
[4]   AMBARD A J , MUENINGHOFF L . Calcium phosphate cement:review of mechanical and biological properties[J]. J Prosthodont, 2006, 15 (5): 321- 328
doi: 10.1111/jopr.2006.15.issue-5
[5]   MANGANO C , SCARANO A , IEZZI G et al. Maxillary sinus augmentation using an engineered porous hydroxyapatite:a clinical, histological, and transmission electron microscopy study in man[J]. J Oral Implantol, 2006, 32 (3): 122- 131
doi: 10.1563/796.1
[6]   MOREAU J L , XU H H . Mesenchymal stem cell proliferation and differentiation on an injectable calcium phosphate-chitosan composite scaffold[J]. Biomaterials, 2009, 30 (14): 2675- 2682
doi: 10.1016/j.biomaterials.2009.01.022
[7]   连芩, 李涤尘, 王臻 et al. 壳聚糖纤维/磷酸钙骨水泥复合材料人工骨的降解性能[J]. 机械工程学报, 2010, 46 (5): 110- 115
LIAN Qin , LI Dichen , WANG Zhen et al. Degradation behavior of chitosan-fiber/cacium phosphate cement composite for artifical bone[J]. Journal of Mechanical Engineering, 2010, 4 (5): 110- 115
[8]   徐立新, 史雪婷, 王彦平 et al. 聚磷酸钙纤维增强增韧磷酸钙骨水泥的力学效应[J]. 中国组织工程研究与临床康复, 2009, 13 (38): 7474- 7476
XU Lixin , SHI Xueting , WANG Yanping et al. Mechanical effect of calcium polyphosphate fiber on reinforcing calcium phosphate bone cement composites[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2009, 13 (38): 7474- 7476
[9]   XU H H , QUINN J B . Calcium phosphate cement containing resorbable fibers for short-term reinforcement and macroporosity[J]. Biomaterials, 2002, 23 (1): 193- 202
doi: 10.1016/S0142-9612(01)00095-3
[10]   王丽婷, 周钢, 樊瑜波 . 纳米壳聚糖对MC3T3-E1成骨细胞生长的影响[J]. 中国组织工程研究, 2013, 17 (42): 7375- 7381
WANG Liting , ZHOU Gang , FAN Yubo . Insight into nano chitosan effects on MC3T3-E1 cell growth[J]. Chinese Journal of Tissue Engineering Research, 2013, 17 (42): 7375- 7381
doi: 10.3969/j.issn.2095-4344.2013.42.006
[1] LI Wenbo,JIA Dingding,WANG Fei,ZHANG Chao,SHI Jie,ZHANG Hong,WU Lujia,GAO Qiuming. Effect of exogenous L-arginie on survival of extended dorsal perforator flaps in rats[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 656-661.
[2] CHEN Lifeng,YANG Xianyan,MA Rui,ZHU Linghua. Application of mechanically reinforced 45S5 Bioglass®-derived bioactive glass-ceramic porous scaffolds for bone defect repairing in rabbits[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 600-608.
[3] QU Tao, ZHENG Ping, YANG Chengwei, LAN Xu, ZHANG Tao, LIU Hua, WANG Shiyong. Effects of Danshensu on bone formation in ovariectomized rats[J]. J Zhejiang Univ (Med Sci), 2016, 45(6): 587-591.
[4] ZHANG Zhan, ZHANG Chun, GUO Qiaofeng. Study on the acid hydrolysis, fiber remodeling and bionics mineralization of rat tail tendon collagen type Ⅰ[J]. J Zhejiang Univ (Med Sci), 2016, 45(6): 592-597.
[5] ZHOU Yanfeng, GAO Yuhai, ZHEN Ping, CHEN Keming. Effects of 1.8 mT sinusoidal alternating electromagnetic fields of different frequencies on bone biomechanics of young rats[J]. J Zhejiang Univ (Med Sci), 2016, 45(6): 561-567.
[6] CHEN Yanshan, YU Chengbo, CAO Hongcui, LI Lanjuan. Effect of shift rotation culture on formation and activity of encapsulated hepatocytes aggregates[J]. J Zhejiang Univ (Med Sci), 2016, 45(4): 403-409.
[7] KONG Xiangpeng, NI Ming, ZHANG Guoqiang, CHAI Wei, LI Xiang, LI Yucong, WANG Yan. Application of tendon-derived stem cells and bone marrow-derived mesenchymal stem cells for tendon injury repair in rat model[J]. J Zhejiang Univ (Med Sci), 2016, 45(2): 112-119.
[8] XING Gui-ying, SHAO Lin-jun. Preparation and performance characterization of pseudo-ginseng entrapped in crosslinked chitosan/polyacrylic acid/poly(ethylene oxide) nanofibrous membrane[J]. J Zhejiang Univ (Med Sci), 2015, 44(6): 665-671.
[9] WANG Jian, ZHU Zhi-wen, XU Guo-hua, AN Yue. Research progress of self-assembled monolayer in biomedical metallic materials[J]. J Zhejiang Univ (Med Sci), 2015, 44(5): 589-594.
[10] LI Yun, LIU Yan-ming, FU Tao, LI Bo. Influence of gelatin particle size and gelatin/calcium phosphate cement ratio on repairing potency of composite artificial bone material[J]. J Zhejiang Univ (Med Sci), 2015, 44(3): 293-300.
[11] ZHANG Chun-yang, ZHU Yan, FENG Hua-song, CHEN Xu-xin. Effect of irradiated human lung fibroblasts on activation of canonical Wnt/β-catenin signaling pathway in mesenchymal stem cells[J]. J Zhejiang Univ (Med Sci), 2015, 44(2): 162-166.
[12] LV Jie-min, Huang Di-yu, Lin Hui, Wang Xian-fa. Laparoscopic anti-reflux surgery with biological mesh in treatment of gastroesophageal reflux disease[J]. J Zhejiang Univ (Med Sci), 2015, 44(1): 74-78,84.
[13] WANG Bing, CHEN Yan, SONG Yang, WANG En-sheng, ZHENG Dan, QU Fan, ZHOU Jian-hong. Correlation between follicle-stimulating hormone and total procollagen I N-terminal propeptide in perimenopausal women[J]. J Zhejiang Univ (Med Sci), 2015, 44(1): 85-89.
[14] ZHANG Yani,WU Shanwei,XU Jiayao,CHEN Wei,LV Yuanyuan. Preparation and performance characterization of electrospun drug loaded poly (vinyl alcohol)/chitosan nanofibrous membrane[J]. J Zhejiang Univ (Med Sci), 2013, 42(6): 644-648.
[15] ZHOU Shuqing,ZHENG Caihong. Preparation of microspheres of superoxide dismutase and their activities[J]. J Zhejiang Univ (Med Sci), 2013, 42(6): 666-670+692.